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ABSTRACT: Biological quality elements have been developed
worldwide to assess whether a water body is in a good status or not.
However, current studies mainly focus on a single taxonomic group
or a small set of species, often limited by methods of morphological
identification, and lack further aspects of biodiversity (e.g., across
taxa and multiple attributes) and ecosystem functions. Here, we
advance a framework for assessing the river’s ecological status based
on complete biodiversity data measured by environmental DNA
(eDNA) metabarcoding and measurements of ecosystem functions
in addition to physicochemical elements across a large riverine
system in China. We identified 40 indicators of biodiversity and
ecosystem functions, covering five taxonomic groups from bacteria
to invertebrates, and associated with multiple attributes of
biodiversity and ecosystem functions. Our data show that human impact on ecosystems could be accurately predicted by these
eDNA-based indicators and ecosystem functions, using cross-validation with a known stressor gradient. Moreover, indices based on
these indicators of biodiversity and ecosystem functions not only distinguish the physicochemical characteristics of the sites but also
improve the assessment accuracy of 20−30% for the river’s ecological status. Overall, by incorporating eDNA-based biodiversity with
physicochemical and ecosystem functional elements, the multidimensional perspectives of ecosystem states provide additional
information to protect and maintain a good ecological status of rivers.
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1. INTRODUCTION

Rivers provide fundamental ecosystem services for humans and
their state is closely linked to socioeconomic development.1−3

Unfortunately, these services are at stake through local to
global river degradation, which accelerated within the last
decades.4−6 Establishing an effective assessment method that
allows quick and reliable identification of the direction and the
degree of ecosystem changes has become an urgent challenge
for government managers and stakeholders.7,8 Biological
quality elements (BQEs) are an effective and legally
implementable approach to explore human-induced environ-
mental changes. A famous case is the European Union’s Water
Framework Directive 2000/60/EC (WFD), which uses BQEs
as key bioindicators to identify the ecological status of surface
water.9−11 Although the BQE-based system has promoted our
understanding of the river’s ecological status, the current BQE
system indeed does not cover all species present in ecosystems
equally.10,12−14

Complete biodiversity data, covering many taxonomic
groups and multiple attributes, are an important basis for
revealing and predicting ecosystem changes.15,16 A recent
study emphasized complex changes in biodiversity among taxa,
such that any single or few groups (e.g., fish, diatoms, or

macroinvertebrates) cannot completely represent each other.17

Other measures, such as phylogenetic and functional attributes,
capture further aspects of the community. For example,
phylogenetic diversity is linked to the evolutionary assembly
of species in the natural community,18 while functional
diversity is linked to resource utilization strategies.19 Thereby,
phylogenetic and functional diversity can identify biodiversity
changes in different ways,20 and measurement of biodiversity
should cover multiple taxa and attributes associated with
ecosystem changes. However, limited by morphological
methods, the acquisition of complete biodiversity data has
not been effectively solved yet.
Recent advances in environmental DNA (eDNA) meta-

barcoding provide a new opportunity to capture complete
biodiversity.15,21−23 This is especially the case for meio- and
microorganisms (e.g., invertebrates, protozoa, fungi, algae, and
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bacteria) that were underrepresented in previous biomonitor-
ing.24 Meio- and microorganisms not only play an important
role in the material and energy transfer of aquatic food
webs25,26 but can also sensitively indicate ecosystem
changes.27,28 A previous study highlighted that 40−90% of
the DNA sequences in eDNA data belong to these meio- and
microbiota.29 Recently, researchers have increasingly advo-
cated that molecular fingerprints should be included in
bioassessments for detecting ecosystem changes over
time.7,30,31 However, significant gaps remain before the
molecular tools are used in routine bioassessments, such as
how robust and comparable methods and results are compared
to previously validated techniques.
Another critical aspect for identifying the ecological status of

rivers is linked to the provisioning of ecosystem functions, such
as self-purification and clean water resources.3,5,32 To some
degree, rivers can remove pollutants through a series of
physical, chemical, and biological processes such as diffusion,
oxidation, and enzyme metabolism to ensure material
recycling. As a typical case of riverine ecosystems, carbon
decomposition (e.g., leaf litter) has been used to indicate
changes in nutrient fluxes in ecosystems.33,34 Recent studies
suggested that carbon decomposition shows clear patterns
across spatial scales and has the potential to indicate ecosystem
changes.35,36 Especially, the decomposition of cotton strips has
been used as a metric of carbon decomposition, which can
greatly promote the standardization of monitoring methods at
a large spatial scale.35,37 However, to our knowledge, there is
still a lack of studies that integrate ecosystem functions with
physicochemical elements (e.g., habitat and water quality
variables) and biodiversity to assess the river’s ecological status.

Here, we propose a framework integrating multiple data
sources including biodiversity (across taxa and multiple
attributes) and ecosystem functions (e.g., carbon decom-
position) with physicochemical data to comprehensively reveal
human-induced ecosystem changes in riverine ecosystems
(Figure 1). Biodiversity fingerprints across taxa (including
invertebrates, protozoa, fungi, algae, and bacteria) in the
Shaying River in China were obtained by eDNA metabarcod-
ing. Ecosystem functions including leaf litter and cotton strip
decomposition were measured. The reliability and compara-
bility of the framework were verified by the following steps: (1)
rebuilding a known stressor gradient on the spatial scale using
the physicochemical data to screen the candidate indicators of
biodiversity and ecosystem functions; (2) analyzing the
prediction performance of the framework on the known
stressor gradient by the screened indicators; and (3)
comparing the consistency between the indices developed by
the indicators of biodiversity and ecosystem functions and the
physicochemical elements to assess river’s ecological status.

2. MATERIALS AND METHODS
2.1. Study Area and Sampling. Shaying River is the

largest tributary of Huai River in eastern China (Figure S1),
with a length of 620 km and a drainage area of 39 880 km2.
This region inhabits >26.4 million people and has a high rate
of urbanization.38 We set up 20 sites across the Shaying River,
which are located in the tributaries and the downstream
reaches of their intersection (topological distance >30 km
between two sites). Such sampling sites are arranged to capture
the hierarchic structure of diversity and ecosystem func-
tions.15,16 Based on the relative intensity of human disturbance,

Figure 1. Overview of the analysis from field observations to final human-induced ecosystem change assessment. Integrated data from several
observation sources, including physicochemical characteristic data and biodiversity (across taxa and multiple attributes) and ecosystem functions to
comprehensively and ecofriendly reveal ecosystem changes. The workflow mainly includes three units: site survey (multivariate data integration),
index screening, and multiperspective ecosystem status assessment.
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the whole region (and thus the sampling sites) can be divided
into three major groups: mild disturbance (five sites) with
relatively mild human impacts (e.g., land use), high agriculture
and industry (eight sites) characterized by intense agriculture
and industry, and high agriculture (seven sites) with intense
agriculture and industry, respectively.16

Field samples across the three major groups of this region
were collected in April (spring) and October 2018 (autumn),
respectively. Two sites were abandoned in April due to serious
poor traffic conditions. Collection and preservation of field
eDNA samples followed the previously published protocol.27

Briefly, three 1 L surface water per site were collected using
sterile bottles (Thermo Fisher Scientific), and 300−500 mL of
water was filtered using a 0.45 μm hydrophilic nylon
membrane (Merck Millipore). Six field replicates (or
subsamples) were obtained at each site. All replicates of
membrane discs were placed in 5.0 mL centrifugal tubes and
stored at −20 °C until DNA extraction. Blank controls at each
site were performed using autoclaved tap water (filtered 300
mL), and were also taken for the DNA extraction, polymerase
chain reaction (PCR) amplification, and next-generation
sequencing (NGS) step in parallel with replicate samples to
monitor possible contaminants.
2.2. eDNA and Biodiversity. All membrane discs

(including blank controls) were extracted using a DNeasy
PowerWater Kit (QIAGEN, Germany). PCR assays were
performed using three primer sets.39−42 Specifically, a universal
primer pair (BF1 and BR2) was used to amplify the 316 bp
fragment of the COI genes for invertebrate detection, a
universal eukaryotic primer pair (1380F and 1510R) was used
to amplify the 130 bp fragment of the V9 region of 18S rRNA
genes for protozoa, fungi, and algae detection, and the 180 bp
fragment of the V3 region of 16s rRNA genes was amplified
using the primer pair (341F and 518R) for bacteria detection.
Three PCR replicates were performed on all replicates to
minimize potential PCR bias. All purified PCR products were
pooled with equimolar quantities for subsequent sequencing.
Depending on the PCR amplicon size, sequencing templates
were sequenced in the Ion Proton sequencer (Life
Technologies) and the Illumina MiSeq PE300 platform
(Illumina), respectively.
Low-quality sequences were discarded using the “split_li-

braries.py” script with “−w 50 −s 25 −l 100” parameters in the
QIIME toolkit.43 Sequences were denoised by removing
duplicates, the singletons, and PCR chimeras. Cleaned
sequences were sorted and distinguished by unique sample
tags, and then were clustered into OTUs with 97% nucleotide
similarity. For protozoa, fungi, algae, and bacterial commun-
ities, taxonomic annotation of each OTU was assigned against
the Greengenes database44 and the Protist Ribosomal
Reference database45 using “align_seqs.py” script, respectively.
Each detected invertebrate OTU was assigned against a
custom reference database (NCBI Genbank database and
indigenous database) using BLASTN pipeline with a ≥98%
similarity cutoff to get taxonomic information. Taxonomic
(Shannon’s diversity and Pielou’s evenness) and phylogenetic
(Faith’s phylogenetic diversity) diversity indices of five
taxonomic groups were calculated using the “alpha_diversity.-
py” script in the QIIME toolkit. Any OTU with relative
abundances of <0.001 and a <10% detection frequency in all
samples was discarded to clear all OTUs from the extraction
and PCR negative controls. Based on the relative abundance of
OTUs (that is the proportion of any OTU sequence to the

total community sequence), indicative OTUs were identified
using a multipatt function in the R package Indispecies, and
the Indicator Values (IndVal) were used to reflect the
conditional probability of the OTUs as an indicator, followed
by 999 permutations for the significance test.46 Species traits of
invertebrates, protozoa, and algae were mainly retrieved from
published papers47−49 and database repositories. Details on
species traits of these three groups were summarized in
another of our studies in the same region.16

2.3. Physicochemical Data. Physical elements, including
10 habitat variables, were investigated referring to the U.S.
EPA rapid bioassessment protocols,50 including substrate
cover, habitat complexity, velocity/depth regime, bank
stability, channel alteration, channel flow status, vegetative
protection, water quality, human activity intensity, and riparian
land use. To avoid the potential subjective bias of investigators,
no less than three investigators on the site scored and
photographed the habitat, and then calculated their mean value
to obtain the overall physical habitat status of the
corresponding sampling sites. Land use raster maps (30 m
resolution) interpreted from Landsat 8 remote-sensing images
in 2018 were used to calculate parameters of land use patterns.
Details on land use data were summarized in another of our
studies in the same region.16

Chemical elements, that is 16 water quality variables, were
measured at each site. Dissolved oxygen (DO), pH, electrical
conductivity (EC), and water temperature (WT) were
measured by an AP-2000 Multiparameter Water Quality
Instruments (Aquaread, U.K.) on site. For the total nitrogen
(TN), total phosphorus (TP), ammonia nitrogen (NH3−N),
and potassium permanganate index (chemical oxygen demand,
COD), the collected 1 L surface water was taken back to the
laboratory and measured by national standard methods
(NEPB, 2002), respectively. For the metals (Zn, Fe, Cu, Ni,
Cr, As, Cd, Mn), 1 L surface water was diluted with 2% HNO3
and filtered through a 2.5 μm membrane filter (Whatman,
U.K.), and then the concentration of heavy metals was
determined using inductively coupled plasma mass spectrom-
etry (Thermo Fisher).

2.4. Ecosystem Functions. Leaf litter (Populus alba) and
cotton strip decomposition were measured at all sampling sites.
Details on sample collection and treatment in the measure-
ment of ecosystem functions are given in a previous study.16

Briefly, coarse (10 mm) and fine containing ca. 5 g of air-dried,
naturally senescent P. alba leaves, cotton strips (ca. 8 cm × 10
cm), and a HOBO InTemp Data Logger (Onset) were tied to
a stainless-steel metal frame using plastic wire, which was then
put into the river and fixed at the river bottom. Two mesh bags
were set to permit or prevent invertebrate colonization, which
enabled us to quantify total, microbial, and invertebrate-driven
decomposition rates of leaves.36 All mesh bags were retrieved
after 3−4 weeks and the leaves and cotton strips were gently
rinsed with running water to remove debris, and then freeze-
dried to constant mass (>72 h) and weighed to the nearest
0.01 mg. Decomposition rates of leaves and cotton strips were
calculated following the published formula.16,51−53

2.5. Candidate Indicators and Prediction. The data sets
were randomly divided into (a) a training data set containing
the randomly selected two-third of the samples (including
reference and impaired sites) and (b) a testing data set
including the remaining one-third of the samples. The training
data set was used to screen the candidate indicators and
develop a prediction model. We used the testing data set to
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assess the prediction performance of the models developed by
the training data set. First, we defined the “candidate
indicators” as a series of metrics on biodiversity and ecosystem
functions (e.g., the relative abundance of taxa, diversity, and
functions) that must respond sensitively (positively or
negatively) to human impacts in the training data set. Then,
the screening of candidate indicators followed three steps:

(1) To avoid the redundancy of data information, the
correlations among all metrics (including biodiversity
and ecosystem functions) were calculated, and the
primary screening of redundant metrics was conducted
based on the standard of absolute r > 0.75.28 Screening
criteria were such that the remaining metrics should
maximize the coverage of different attributes.

(2) To further determine significant positive or negative
metrics, general linear models were run between the
remaining metrics (derived from the first step) and a
known human stressor gradient (Figures S2 and S3).
The general linear models were selected because they
can directly and clearly identify sensitivity and tolerance
metrics.14,54 To rebuild a known human stressor
gradient, principal component analysis (PCA) was
carried out on the chemical variables; eigenvalues >1

and absolute r > 0.50 were taken as a criterion for the
extraction of the principal components (PC), the first
two PCs (PC1 and PC2) were equally weighted to
obtain the new PC (PCAxis) as the gradient descriptor
of the human stressor. The PCAxis gradient was
validated against the chemical variables and the gradient
of human land use (e.g., cropland and impervious
cover), and we found significant positive relationships
among them (Figure S4 and Table S1). These results
suggest that the PCAxis could clearly indicate the
intensity of human disturbance.

(3) To verify the reliability of the identified sensitivity
metrics (derived from the second step), Student’s t-tests
were used to check the significance of sensitivity metrics
between the preset reference (n = 18) and impaired sites
(n = 6). The preset reference sites refer to undisturbed
or only minimally disturbed sites by human activ-
ities.55,56 Specifically, the selection criteria of reference
sites in this study were as follows: (i) the environmental
quality standards for surface water is above grade II in
China (GB3838-2002), that is, reference sites should
reach and be better than DO ≥6 mg/L, COD ≤4 mg/L,
NH3−N ≤ 0.5 mg/L, TN ≤0.5 mg/L, and TP ≤0.1 mg/
L and (ii) the score of the habitat quality is beyond 120,

Figure 2. Spatial distribution of OTU-based indicators (A) and species traits (B) in the different taxonomic groups across the three major groups.
The dot is the comparison of relative abundance of each indicator (A) and species traits (B) across the three major groups, and the bubble size
represents their relative abundance in each taxonomic group.
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the human disturbance in the riparian zone is the
minimum, and no obvious agricultural and industrial
land is in close vicinity (Figure S5). In contrast, impaired
sites are defined as those sites where either the water
quality standards or habitat quality is lower than the
reference site.

Finally, a series of metrics on biodiversity and ecosystem
functions meeting the abovementioned three steps were
considered as candidate indicators. All indicators of biodiver-
sity and ecosystem functions were standardized by z-score
transformation (mean of 0 and standard deviation (SD) of 1)
to meet the normal distribution. To predict the impacts of
human disturbance (surrogated by the PCAxis) on ecosystems
using the indicators of biodiversity (e.g., the relative abundance
of OTUs-based indicators, richness, diversity) and ecosystem
functions (e.g., the decomposition of leaf litter and cotton
strips), predictive models were fitted for the training data set
using multivariate linear regression (MLR) models. The testing
data set was used to examine the accuracy of predicted values
derived from MLR models compared with actual measured
values.
2.6. Index Development and Comparison. To

eliminate the scale differences between candidate indicators
and to convert them into measurable and comparable values,
all indicators were standardized referring to the formula in
Table S2. In the formula, Q95% and Q5% are the 95th percentile
and 5th percentile of the value at all sites, respectively, andM is
the actual measured value of each site. To develop a
bioassessment index that represents biodiversity or ecosystem
functional elements, including single element and accumulative
element index (Bio_Functions, integrating biodiversity, and
ecosystem functional elements), all candidate indicators of
each type were treated with reference to the formula in Table
S3 so that their scores were between 0 and 1, and the higher
the values, the better the river’s ecological status. Based on the
equal division method, the river’s ecological status was divided

into five levels, namely, “very good [0.8, 1.0],” “good [0.6,
0.8),” “fair [0.4, 0.6),” “poor [0.2, 0.4)”, and “very poor [0,
0.2)” (Figure S6 and Table S3). To compare the consistency
between the indices developed by the indicators of biodiversity
or ecosystem functions and the physicochemical elements to
assess river ecological status, the level of agreement between
the two was quantified using the kappa2 function in the R
package irr;57 the higher value indicates higher consistency.

3. RESULTS

3.1. Distribution of OTU-Based Indicators and
Species Traits at Spatial Scale. We detected a total of
2 002 177 invertebrate reads, 3 026 866 protozoan reads,
1 221 127 fungal reads, 8 695 888 algal reads, and 2 946 353
bacterial reads across all samples after stringent quality filtering
(Table S4). These eDNA data were assigned to 806
invertebrate OTUs, 819 protozoan OTUs, 688 fungal OTUs,
1697 algal OTUs, and 1994 bacterial OTUs, annotated to 49
phyla, 119 classes, 227 orders, 297 families, 528 genera, and
411 species, respectively. The most abundant taxa were Insecta
and Rotifera in invertebrates; Ciliophora and Amoebozoa in
protozoa; Ascomycota and Oomycota in fungi; Ochrophyta,
Cryptophyta, and Chlorophyta in algae; and Proteobacteria,
Bacteroidetes, and Actinobacteria in bacteria.
A total of 81 OTU-based indicators were identified by the

indicator analysis to characterize the intensity of human
disturbance. Overall, 37 of the 81 OTU-based indicators have
clear taxonomic information at the genus or species level
(Figure 2A), such as Trithemis sp., Dicrotendi pespelochloris, and
Cyclotella sp. The relative abundance of these indicators
fluctuates greatly (range from 1 to 100 times) across the three
major groups of this region. For example, the relative
abundances of Trithemis sp. and D. pespelochloris are the
highest in mild disturbance; Ischnura elegans, Scenedesmus sp.,
and Cyclotella sp. belong to the dominant taxa in high
agriculture and industry; while Polypedilum nubifer, Enhydro-

Table 1. Screened Indicators for Assessing the River’s Ecological Status and Their Response Trends to Human Disturbance
(Surrogated by the PCAxis) in the Training Data Seta

groups attributes response groups attributes response

invertebrates Invertebrate_Shannon decrease algae Algae_Shannon decrease
Insect_OTUs decrease Diatom_Shannon decrease
Chironomid_OTUs decrease Chlorophyta_ OTUs decrease
Mollusca_OTUs decrease Cryptophyta_ OTUs decrease
Oligochaeta_OTUs decrease %Dinophyta increase
%Orthocladius sp. decrease %top3 diatom increase
%Burrow increase %top3 cyanobacteria increase

protozoa Protozoa_OTUs decrease %Scenedesmus sp. increase
Opisthokonta_OTUs increase %Cyclotella sp. increase
Stramenopiles_OTUs increase %Biovolume Xla decrease
%Amoebozoa decrease %filamentous increase
%Euglenozoa increase bacteria Bacteria_Phylogenetic increase
%Cochliopodium minus decrease Bacteroidetes_OTUs increase
%Pseudopods decrease %top3 bacteria increase
%Cilia increase %Rhodococcus sp. increase

fungi Fungi_OTUs decrease %Corynebacterium sp. decrease
Oomycota_OTUs increase %Flectobacillus sp. decrease
%Ascomycota decrease %Psychrobacter sanguinis decrease
%top3 fungi increase ecosystem functions leaves kTotal decrease
%Saccharomyces cerevisiae decrease cotton strips kTotal decrease

a“_Shannon”, “_OTUs”, “_Phylogenetic”, “Top3”, and “kTotal” present Shannon’s diversity, OTU number, faith’s phylogenetic diversity, percentage
of top three dominant taxa, and the total decomposition rates of leaves or cotton strips, respectively.
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bacter sp., and Macrothrixm sp. mainly occupy the high
agriculture. In addition, some species traits in invertebrates and
protozoa have a unique distribution across the three major
groups of this region (Figure 2B). Specifically, gatherer/
collector, sensitive taxa, and small body size (<9 mm) in
invertebrates prefer to live in mild disturbance; filter/collector,
tolerant taxa, cling taxa, omnivore, and small body size (<9
mm) in invertebrates, and plastron or spiracle respiration in
protozoa could be captured more in high agriculture and
industry; and medium body size (9−16 mm), the predator in
invertebrates, and tegument respiration in protozoa are more
dominant in high agriculture.

3.2. Indicators of Biodiversity and Ecosystem
Functions Accurately Predicted the Intensity of
Human Disturbance. A total of 40 indicators were screened
after the three-step screening (including redundancy analysis,
linear regression analysis, and t-test), which cover five
taxonomic groups from bacteria to invertebrates, multiple
attributes of biodiversity (including taxonomic, phylogenetic,
and functional aspects), and OTU-based indicators and
ecosystem functions (Table 1). These screened indicators
have significant positive or negative relationships with the
intensity of human disturbance (surrogated by PCAxis, Table
1). For example, the Shannon diversity index, the relative
abundance of OTU-based indicators (e.g., Orthocladius sp.),
and carbon decomposition have negative responses to human
impacts, while some dominant taxa and species traits have
positive responses (e.g., burrowing invertebrates and ciliated
protozoa).
Using screened indicators of biodiversity and ecosystem

functions, we could identify the intensity of human disturbance
(surrogated by PCAxis) with 32−62% accuracy on the training
data set (R2 value of MLR models). The accuracy value of the
accumulative indicators (Bio_Functions, integrating biodiver-
sity, and ecosystem function metrics) was higher (62%) than
any single data (from 32 to 57%, Table 2). Comparing the
predicted value (MLR models in the test data set) with the
actual value derived from environmental data of human
disturbance, there is a good consistency between each value
(R2 = 0.47−0.59, from linear regression models, Figure 3). In
addition, we found a positive or negative deviation of the
prediction models at the minimum and maximum levels of
human disturbance whether single or cumulative indicators,
respectively. For example, the predicted value is higher than
actual ones in low disturbance, but the lower predicted value
occurs in a high disturbance. The predicted values of
accumulative indicators of biodiversity and ecosystem
functions are closer to the true value than single data (the
1:1 asymptote, Figure 3).

Table 2. Summary on the Multivariate Linear Regression
Models to Predict the Intensity of Human Disturbance
(Surrogated by the PCAxis, as the Dependent Variable, y) in
the Training Data Set Using Screened Indicators on
Biodiversity and Ecosystem Functions (as the Independent
Variable, x)a

groups predictor formula adj-R2 F

invertebrate y = −0.013 − 0.212 × Invertebrate_-
Shannon − 0.118 × Insect_OTUs

0.41 11.697

protozoa y = −0.021 − 0.268 × Amoebozoa_OTUs
+ 0.179 × %Cilia

0.37 9.458

fungi y = −0.019 + 0.241 × %top3 fungi − 0.114
× %Ascomycota

0.40 10.049

algae y = −0.031 + 0.128 × %Scenedesmus sp. +
0.162 × %Dinophyta + 0.140 × %
filamentous

0.57 15.312

bacteria y = −0.029 + 0.159 × Verrucomicro-
bia_OTUs + 0.108 × %Rhodococcus sp.

0.35 9.253

ecofunctions y = −0.023 − 0.175 × leaves kTotal 0.32 8.021

Bio_Functions y = −0.038 − 0.254 × Invertebrate_-
Shannon + 0.132 × %filamentous −
0.105 × leaves kTotal + 0.071 × %top3
fungi

0.62 18.322

a“_Shannon”, “_OTUs”, “Top3”, and “kTotal” present Shannon’s
diversity, OTU number, percentage of top three dominant taxa, and
the total decomposition rates of leaves, respectively.

Figure 3. Comparison between the predicted value (R2 value of multivariate linear regression models) of human disturbance (surrogated by
PCAxis) given by the indicators in test samples and the actual value derived from environmental data; the red diagonal dash lines represent the 1:1
ratio between predicted and measured values. Bio_Functions integrate indicators of biodiversity and ecosystem functional elements.
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3.3. Indices Developed by Indicators Improved the
Assessment of the Ecological Status of Shaying River.
We found significant positive correlations between the indices
developed by the indicators of biodiversity and ecosystem
functions and the physicochemical elements, and these indices
can clearly distinguish the physicochemical characteristics of
the sites (physical, R2 = 0.52−0.77, κ = 0.51−0.71; chemical,
R2 = 0.54−0.83, κ = 0.59−0.81) (Figures 4A−C and S6−S11).
Compared with any single element index (e.g., invertebrates or
algae), the accumulative element index (Bio_Functions) not
only has higher consistency with physicochemical elements
(physical, R2 = 0.77, κ = 0.69; chemical, R2 = 0.83, κ = 0.81)
but also improved the assessment accuracy by 20−30% for the
identification of reference and impaired sites in Shaying River
(Figure 4D). Furthermore, using the multidimensional frame-
work including the indices developed by the indicators of
biodiversity and ecosystem functions, we can not only directly
distinguish the sites with poor ecological status in the
catchment but also completely understand the associated
damage degree integrating physicochemical, biodiversity, and
ecosystem functional elements (Figure 5).

4. DISCUSSION

Our study showed that OTU-based indicators are an effective
taxonomy-free strategy to reveal the status and possible change
of ecosystems. For example, we identified that the relative
abundance of 81 OTU-based indicators was strongly
associated with different human disturbance groups (range
from 1 to 100 times), although only 37 of them have clear
classification at the genus or species level. This result indicates
that OTU-based indicators can make up for the deficiency of
the traditional species annotation strategy to a great extent
because the traditional strategy is limited to the part of
biodiversity with obvious morphological characteristics, which
often has high coverage of public reference sequences, such as
fish and birds.58,59 Recent studies have indeed found that for
well-studied groups, eDNA-based assessments give comparable
results with respect to ecological indices.60,61 Although eDNA
metabarcoding may reduce cost and is a less invasive sampling
process,23,62,63 the deficiency of reference databases and the
deviation of OTU species annotation are still one of the biggest
shortcomings of this method. An OTU-based indicator
strategy obviously reduces or bypasses the dependence of
species annotation on reference databases.7 Relying directly on
the occurrence of OTUs in known stressor gradients, it may
give indicator values similar to morphology-based species
identification, and thus also allow transitioning between the
two methods. The advantage of an OTU-based method is that
almost 90% of the OTUs can be used to calculate the
biological index, while this value drops to less than 30% (or
even much lower) when a species annotation method is
taken.7,27,54,61,64,65 Importantly, even without having a
complete taxonomic resolution, OTUs can be linked to traits
of invertebrates and protozoa and thereby indicate the
intensity of human disturbance. For example, the relative
abundance of tolerant and small body size species in
invertebrates increases with human disturbance. Species traits
directly link the functional roles of organisms with environ-
mental factors (e.g., flow, temperature, and nutrients), and
some functional traits are not limited by taxonomy and are
more stable in space so that they can be applied on a large
spatial scale.19,49

Figure 4. Relationships between the accumulative index (Bio_-
Functions, integrating biodiversity, and ecosystem functional
elements) and the physicochemical elements (A). Colored boxes
represent the score of the ecological status (y-axis) given by the
framework (B, C): green, very good [0.8, 1.0]; light green, good [0.6,
0.8); yellow, fair [0.4, 0.6); brown, poor [0.2, 0.4); and red, very poor
[0, 0.2). The R2 (derived from multivariate linear regression models)
and κ values (derived from κ tests) indicate the linear fit and the level
of agreement, respectively. The higher value means the higher
consistency. Comparison of identification of reference and impaired
sites by different types of indices (D).
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The metrics on ecosystem functions indicate a significant
negative impact of human disturbance on ecosystem functions
in the Shaying river basin. For example, we found that the
decomposition of the leaf litter and cotton strips has a
significant negative response to human disturbance (surrogated
by PCAxis, Table 1), and there is a significant difference at
reference and impaired sites. These two indicators further
corroborate that they have great potential to capture functional
changes in riverine ecosystems.36,52 A pan-European con-
tinental study supports our data, finding that leaf litter
decomposition in impaired rivers is significantly lower than
in the reference status.36 Some studies proved that the
decomposition of leaf litter is actually the consequence of
the joint regulation of nitrogen and phosphorus concentrations
on leaf litter metabolism in ecosystems (including water body
and the litter itself), such as the high decomposition rate
caused by the low C/N ratio.66,67 This evidence suggests that
the inherent differences of elemental composition (e.g., C/N/
P ratios) in the ecosystem may affect the decomposition of leaf
litter. To overcome or correct slight defects of leaf litter, we
synchronously used the substrate with homogeneous chemical
composition (cotton strips, >99% cellulose component). As
expected, the response of cotton strips to human impact is

consistent with that of leaf litter, and the decomposition of
cotton strips decreased significantly with the increase in human
disturbance. These data eliminate the relative bias caused by
the chemical heterogeneity of leaf litter to a certain extent,53,68

and also show that the decomposition of cotton strips has great
potential to characterize the ecosystem changes and act as
functional indicators for assessing the ecosystem status.35,37

Our proposed framework provides a comprehensive assess-
ment of the ecological status to identify potential environ-
mental stressors. First, extensive biodiversity data across taxa
and multiple attributes provided by the eDNA metabarcoding
approach reveal the ecological consequences driven by human
impacts in the Shaying river basin, such as shifts of dominant
taxa and species traits and the decline of phylogenetic diversity
(Table 1). Second, metrics on ecosystem functions directly
inform on the degradation or self-purification ability of rivers.
This aspect has been largely ignored in the assessment of the
river’s ecological status in the past decades.33,36,37 The main
contribution of the framework is to integrate complete
biodiversity data and ecosystem functions, allowing major
complementation of traditional ecosystem monitoring. In
general, we developed a multidimensional framework of
biomonitoring and ecological status assessment, including

Figure 5. Results of the ecological status assessment in Shaying River based on the multidimensional framework including physicochemical
elements, biodiversity (across taxa and multiple attributes), and ecosystem functions. The rose pie chart shows the ecological status assessment of
the sampling sites at different elements. Triangles and dots represent April and October data, respectively.
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physicochemical elements, metrics on biodiversity, and
ecosystem functions, for a comprehensive and systematical
perspective on the changes of riverine ecosystems (Figure 5).
To do so, we integrated eDNA metabarcoding into a routine
bioassessment approach and linked it to an index linked to
ecosystem processes (e.g., exogenous carbon decomposition)
to assess the ecological status. Our data showed that together
they not only reliably and accurately predict the impact of
human disturbance on riverine ecosystems but had also higher
accuracy than the traditional physicochemical elements for
assessing the ecological status. In general, we highlight the
great potential of the framework in future biomonitoring and
ecosystem management, which will help to implement
ecoenvironmental regulatory reforms aimed at protecting and
maintaining the good ecological status of rivers.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.est.1c05899.

Overview and detailed map of Shaying River, screening
of reference sites, main taxa in different taxonomic
groups detected by eDNA metabarcoding approach, a
framework for ecological status assessment, principal
component analysis on chemical variables, screening
methods for sensitive and tolerant indicators, relation-
ships between the chemistry-based stressor gradient and
human land use, standardization of variables or
indicators and their formulae, computational formula
and assessment criteria on indices, comparison between
the biological or functional indices and the physico-
chemical elements, and distance-based linear model
results (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Xiaowei Zhang − State Key Laboratory of Pollution Control
& Resource Reuse, School of the Environment, Nanjing
University, Nanjing 210023, P. R. China; orcid.org/
0000-0001-8974-9963; Email: zhangxw@nju.edu.cn,
howard50003250@yahoo.com

Authors
Feilong Li − State Key Laboratory of Pollution Control &
Resource Reuse, School of the Environment, Nanjing
University, Nanjing 210023, P. R. China; Guangdong
Provincial Key Laboratory of Water Quality Improvement
and Ecological Restoration for Watersheds, Institute of
Environmental and Ecological Engineering, Guangdong
University of Technology, Guangzhou 510006, P. R. China;
orcid.org/0000-0002-1545-991X

Yan Zhang − State Key Laboratory of Pollution Control &
Resource Reuse, School of the Environment, Nanjing
University, Nanjing 210023, P. R. China

Florian Altermatt − Department of Aquatic Ecology, Eawag:
Swiss Federal Institute of Aquatic Science and Technology,
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(21) Mächler, E.; Little, C. J.; Wüthrich, R.; Alther, R.; Fronhofer, E.
A.; Gounand, I.; Harvey, E.; Hürlemann, S.; Walser, J.-C.; Altermatt,
F. Assessing different components of diversity across a river network
using eDNA. Environ. DNA 2019, 1, 290−301.
(22) Taberlet, P.; Bonin, A.; Zinger, L.; Coissac, E. Environmental
DNA: For Biodiversity Research and Monitoring; Oxford University
Press, 2018.
(23) Cristescu, M. E.; Hebert, P. D. N. Uses and Misuses of
Environmental DNA in Biodiversity Science and Conservation. Annu.
Rev. Ecol., Evol., Syst. 2018, 49, 209−230.
(24) Eisenhauer, N.; Bonn, A.; Guerra, C. A. Recognizing the quiet
extinction of invertebrates. Nat. Commun. 2019, 10, No. 50.
(25) Brown, L. E.; Khamis, K.; Wilkes, M.; Blaen, P.; Brittain, J. E.;
Carrivick, J. L.; Fell, S.; Friberg, N.; Füreder, L.; Gislason, G. M.;
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