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1  | THE IMPORTANCE OF 
ENVIRONMENTAL DNA STUDIES

Over the last decade we have observed a rapidly increasing num-
ber of studies that are using DNA isolated from the environment, 
especially for aquatic ecosystems, both freshwater and marine. 
These ecosystems are under immense anthropogenic pressures, and 

the biodiversity and associated ecosystem processes and services 
are being heavily and negatively affected (Dudgeon,  2019; Reid 
et  al.,  2019). Consequently, effective management is needed, and 
this itself depends on accurate, timely and reliable assessments of 
the state and change of the organismal communities, either by de-
scribing their biodiversity or by using them for calculating indices 
as proxies describing the environmental state (Jackson et al., 2016; 
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Abstract
The last decade brought a spectacular development of so-called environmental (e)
DNA studies. In general, “environmental DNA” is defined as DNA isolated from envi-
ronmental samples, in contrast to genomic DNA that is extracted directly from speci-
mens. However, the variety of different sources of eDNA and the range of taxonomic 
groups that are targeted by eDNA studies is large, which has led to some discussion 
about the breadth of the eDNA concept. In particular, there is a recent trend to re-
strict the use of the term “eDNA” to the DNA of macro-organisms, which are not 
physically present in environmental samples. In this paper, we argue that such a dis-
tinction may not be ideal, because the eDNA signal can come from organisms across 
the whole tree of life. Consequently, we advocate that the term “eDNA” should be 
used in its generic sense, as originally defined, encompassing the DNA of all organ-
isms present in environmental samples, including microbial, meiofaunal and macro-
bial taxa. We first suggest specifying the environmental origin of the DNA sample, 
such as water eDNA, sediment eDNA or soil eDNA. A second specification would 
then define the taxonomic group targeted through polymerase chain reaction ampli-
fication, such as fish eDNA, invertebrate eDNA and bacterial eDNA. This terminol-
ogy does also not require assumptions about the specific state of the DNA sampled 
(intracellular or extracellular). We hope that such terminology will help better define 
the scope of eDNA studies, especially for environmental managers, who use them as 
reference in routine biomonitoring and bioassessment.
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Pawlowski et al., 2018). A major limitation of past assessment meth-
ods, however, was their high cost, methodological diversity across 
taxonomic groups, as well as the inability to upscale the methods in 
time and space. Highly resolved biomonitoring data, however, are 
crucially needed, possibly depending on novel technologies. An ex-
ample of such an advancement is the use of molecular techniques, 
and the study of environmental (e)DNA in particular, which have 
been proposed to be a game-changer for bioassessment and moni-
toring of biodiversity (Altermatt et al., 2020; Deiner et al., 2017; Kelly 
et al., 2014; Pawlowski et al., 2018; Pfrender et al., 2010; Taberlet 
et al., 2018). Within a few years, many studies on bioassessment in 
aquatic systems started to use and develop eDNA tools. However, 
the objectives, methodologies, source of eDNA and organisms tar-
geted by these studies can be very different. In parallel, these novel 
techniques and the use of eDNA for bioassessment have raised high 
expectations, especially from stakeholders, and they are progres-
sively implemented in ongoing biodiversity monitoring programmes 
and bioassessment studies (e.g., Herder et al., 2014; Pawlowski 
et al., 2020; Thomsen & Willerslev, 2015). While many of the expec-
tations are probably realistic, there is also regular misunderstandings 
and misconceptions on the potential but also limitations (or at least 
boundary-conditions) of eDNA studies, which is further fuelled by 
different uses of terminology in the research field itself.

Here, we advocate for a common terminology, which specifies 
where the DNA comes from (i.e., from which environment), and 
which organisms are looked for (i.e., which organisms’ DNA is tar-
geted with PCR [polymerase chain reaction]). Our proposed ter-
minology links to the original definition of “environmental DNA” 
(Taberlet et  al.,  2012). It would clarify issues concerning the state 
of the DNA sampled and would also resolve discussions about the 
inclusion/exclusion of certain organismal groups based on their size 
only.

2  | THE E VOLUTION OF THE eDNA 
CONCEPT: FROM MICROBIAL TO 
MACROBIAL STUDIES

At the beginning, the technical concept of eDNA was used prin-
cipally to explore microbial diversity. At its basis laid a ground-
breaking idea that the analysis of RNA or DNA extracted from 
environmental samples can be used to assess the natural diversity of 
microorganisms (Pace et al., 1986). The early studies were based on 
RNA isolated from environmental samples (Olsen et al., 1986; Stahl 
et al., 1984). However, very rapidly eDNA became the focus of stud-
ies on microbial diversity and several papers were published on how 
to recover DNA from environmental samples (Ogram et  al.,  1987; 
Paul & Myers,  1982; Somerville et  al.,  1989; Steffan et  al.,  1988). 
At that time, the authors either used a descriptive term “the DNA 
isolated from environmental samples” (Somerville et al., 1989) or 
specifically referred to targeted organisms quoting “bacterial DNA” 
(Steffan et  al.,  1988) or “microbial DNA” (Ogram et  al.,  1987; Paul 
& Myers, 1982). To our knowledge the term “environmental DNA” 

was used for the first time by Ogram et al. (1987) in a figure describ-
ing the protocol for the isolation of microbial DNA from sediments. 
Later, Somerville et al. (1989) used it in reference to the work of Pace 
et al. (1986).

The invention of PCR amplification (Saiki et al., 1988) contributed 
to the rapid development of studies exploring microbial diversity in 
environmental samples. These studies totally changed our percep-
tion of bacterial diversity, revealing huge numbers of uncultivable 
species in the ocean (Giovannoni et al., 1990; Schmidt et al., 1991) 
and in the soil (Picard et al., 1992; Torsvik et al., 1990). Yet, the term 
“environmental DNA” was only sporadically used in these early days 
of bacterial diversity exploration (Suzuki et al., 1997). In parallel, the 
term was sometimes used to refer to the “free” DNA released by 
the lysis of dying cells (Kloos et al., 1994), corresponding to the “ex-
tracellular DNA.” However, the research focus of this and previous 
similar studies (Deflaun et  al.,  1986; Paul et  al.,  1987) was on the 
dynamics and biological potential of “extracellular DNA” rather than 
its use for biodiversity monitoring or bioassessment.

Since 2000, the term “environmental DNA” has become much 
more commonly used (Figure 1) in a variety of studies and often in a 
biodiversity context, such as in the description of new environmental 
microbial phyla (Huber et al., 2002), or the exploration of microbial 
diversity in extreme environments (Gordon et al., 2000). The term 
was also generally adopted in early studies exploring microbial eu-
karyote diversity (Bass & Cavalier-Smith, 2004; Berney et al., 2004; 
Holzmann et al., 2003). In all of these studies, the term did not make 
a specific assumption about the state of the DNA sampled, and was 
mostly linked to the microbial organisms being directly sampled. 
Shortly thereafter, the scope of eDNA studies was expanded to the 
detection of large animals, such as fish or amphibians, whose DNA 
traces are preserved in water for a certain time, as demonstrated 
in a seminal paper by Ficetola et  al.  (2008). This new application 
constituted a turning point in the research field on eDNA, prompt-
ing a series of studies using eDNA to monitor biological invasions 
and/or endangered species in aquatic environments (e.g., Darling & 
Mahon, 2011; Mächler et al., 2014, 2018; Thomsen et al., 2012). In 
parallel, the development of high-throughput sequencing opened 
new perspectives to apply the eDNA approach to survey the com-
munity of species at very high yield and relatively low cost compared 
to the traditional cloning approach (Figure 1).

Rapid increases in the number of eDNA studies in the first 
and second decades of the 21st century called for clarification 
of eDNA terminology. This was done by Taberlet et al.  (2012) in 
a special issue of Molecular Ecology, where eDNA was defined as 
“DNA that can be extracted from environmental samples (such 
as soil, water or air), without first isolating any target organisms.” 
Importantly, this definition does not make assumptions on the 
state of the DNA sampled (extracellular or intracellular, tissue 
fragments, gametes, etc.), and is also not restricted to any specific 
group of organisms. The authors also clarified the differences be-
tween DNA barcoding, DNA metabarcoding (referring to analysis 
of bulk samples) and eDNA metabarcoding (defined as a study that 
allows identification of multiple taxa using eDNA as a template 
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material) (Taberlet et al., 2012). It was also proposed to expand the 
concept of eDNA and to include DNA extracts from gut content or 
from faeces, both containing a mixture of genomic DNA from dif-
ferent organisms (Yoccoz, 2012). However, this latter suggestion 
was rarely followed by authors using DNA metabarcoding for diet 
analysis (Srivathsan et al., 2015).

The recent massive increase of eDNA studies applied to con-
servation biology and biodiversity assessments targeting mainly 
macro-organisms prompted some authors to redefine eDNA as “a 
mixture of potentially degraded DNA from many different organ-
isms” (Bohmann et al., 2014; Cristescu, 2014) or “genetic material ob-
tained directly from environmental samples (…) without any obvious 
signs of biological source material” (Thomsen & Willerslev,  2015). 
The latter definition was introduced to highlight the fact that the na-
ture of DNA present as traces in environmental samples is different 
from the DNA derived from living microorganisms or meiofauna that 
can be present in eDNA samples (Goldberg et al., 2015). Although 
the authors assume that the macrobial eDNA exists predominantly 
inside mitochondria and cells (Turner et  al.,  2014), they state that 
part of it may have extracellular origin. The importance of a sub-
cellular origin of eDNA has also been suggested by other studies 
(Moushomi et  al.,  2019). This creates an additional confusion be-
tween the terms “environmental DNA” and “extracellular DNA.” The 
latter is also used for biodiversity surveys (Corinaldesi et al., 2018; 

Guardiola et al., 2015; Pearman et al., 2016; Taberlet et al., 2012), 
and can be abbreviated as “eDNA,” although mainly in studies re-
lated to microbial biofilm formation (Harmsen et al., 2010).

Currently, two definitions of eDNA are used in ecological studies 
in parallel. On the one hand, the definition of eDNA sensu lato is used 
in global biodiversity surveys that analyse microbial, meiofauna and 
macrofauna communities, focusing on their ecological interactions 
(Deiner et al., 2016; Djurhuus et al., 2020; Zhang et al., 2020) and tem-
poral and spatial dynamics (Altermatt et al., 2020; Bálint et al., 2018; 
Carraro et al., 2020). Such a definition is also commonly used in en-
vironmental biomonitoring studies that target different groups of 
bioindicators to infer or predict biotic indices (Cordier et  al., 2018, 
2019; Li et al., 2018; Pawlowski et al., 2018; Stoeck et al., 2018). This 
definition also recognizes that samples of eDNA contain both intra- 
and extracellular DNA of microbial and macrobial species, and that 
the type of DNA captured may depend on capture method (Deiner 
et al., 2015). On the other hand, the definition of eDNA sensu stricto 
only referring to (mostly or even exclusively extracellular) DNA of 
macrobial organisms is especially used in conservation biology to 
monitor invasive and/or endangered species (Borrell et  al.,  2018; 
Lacoursière-Roussel & Deiner, 2019; O'Sullivan et al., 2020), as well 
as in ecology to survey animal and plants communities and to study 
biodiversity patterns in aquatic ecosystems (see Deiner et al., 2016; 
Nguyen et  al.,  2020). Sometimes, the eDNA concept also includes 

F I G U R E  1   The number of publications by years referring to environmental DNA studies targeting microbial diversity, macrobial diversity 
or both. Microbial diversity encompasses bacterial and viral diversity as well as eukaryotic micro- and meiofauna. The figure is based on 
a PubMed NCBI search (on May 5, 2020) of titles and abstract containing the term “Environmental DNA,” excluding studies containing 
“medical” or “cancer.” This resulted in 1,009 papers. After manual inspection, 192 papers were removed from this list because they 
clearly were outside a biodiversity context. The full list of all papers considered is available upon request [Colour figure can be viewed at 
wileyonlinelibrary.com]
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the DNA extracted from bulk samples (see, for example, Lynggaard 
et al., 2019; Nielsen et al., 2019, both studies working on bulk samples 
but published in a journal dedicated to eDNA). Hence, the same term 
is used in slightly different ways for different types of studies, which 
can lead to misunderstandings or confusion.

3  | RECOMMENDED EDNA TERMINOLOGY

Here, we suggest maintaining the original concept of eDNA, defined 
as a total pool of DNA isolated from environmental samples (Taberlet 
et al., 2012, 2018). This general concept assumes that the eDNA is 
defined primarily by its origin and not by its taxonomic composition 
or its specific structural state (intra- or extracellular). Indeed, such 
a definition covers the DNA of various taxonomic origins, including 
living microorganisms and meiofauna-size taxa, as well as macro-
fauna traces, possible larval stages or gametes, as well as eDNA. The 
eDNA can be isolated from various types of material, principally soil, 
sediment and water, but also from air, biofilm and organic remains, 
such as faeces that may contain DNA of different origin. In principle, 
such a definition precludes any type of size-based physical preselec-
tion of target taxa, such as sieving or kicknet sampling.

We think that restricting the definition of eDNA to the traces 
of large-sized macro-organisms, which are not physically present 
in eDNA samples, is unnecessary and possibly confusing. First and 
most importantly from a semantic point of view, such a definition 
refers to the target DNA that is amplified from the environmen-
tal sample, not to the DNA that is isolated from the environment. 
It is incorrect to say that “macrobial DNA is isolated directly from 

an environmental sample,” as the separation between microbial and 
macrobial DNA occurs only later in processing of eDNA samples. It is 
often forgotten that the macrobial DNA represents only a very small 
fraction of the total DNA recovered from the environment, which 
is mainly of microbial origin (Stat et al., 2017). Second, such a defi-
nition does also not take into consideration that the eggs, larvae or 
other small stages of macrofauna life cycles can be present in envi-
ronmental samples and have been suspected to contribute to some 
of the eDNA signals observed. Finally, it implicitly assumes that the 
structural state of macrobial eDNA is different because it originates 
from DNA traces, while microbial or meiofaunal eDNA might derive 
from whole organisms. However, as demonstrated by numerous ex-
tracellular DNA studies, the microorganisms and meiofauna are rep-
resented there as much as macro-organisms.

We recommend that the eDNA studies adopt a two-level ter-
minology that clearly specifies the origin of environmental samples 
and the target taxa (Figure 2). At a first level, specific terms, such as 
water eDNA, sediment eDNA or soil eDNA, would provide informa-
tion about the environmental source of eDNA and/or the sampling 
methodology. Given that it is an environmental sample already, the 
“e” of the environment is basically defined by the specific environ-
ment given, and its use as a prefix of DNA might be considered as 
redundant but may be clearer. A second level of specification would 
then provide information about the taxonomic groups targeted in 
environmental samples, that is their DNA amplified and sequenced, 
such as fish eDNA, invertebrate eDNA, diatom eDNA and bacte-
rial eDNA. In this case, the use of “eDNA” would clearly separate 
it from DNA extracted from tissues or cultures of these organisms, 
as well as from the DNA extracted from bulk samples that are not 

F I G U R E  2   Principal types of 
environmental samples and target 
taxonomic groups commonly used in 
biomonitoring and bioassessment. This 
figure shows the two levels at which the 
term environmental DNA can be specified. 
The first level indicates where the DNA 
comes from (the type of environmental 
substrate sampled, such as soil, sediment, 
biofilm or water). The second level 
then specifies what taxonomic group is 
targeted by PCR amplification (based 
on the specific choice of primers), 
including bacteria, protists, fungi, 
diatoms, meiofauna, arthropods, molluscs, 
amphibians and fish. The width of the line 
corresponds qualitatively to the common 
usage of particular eDNA extracted for 
each taxonomic group. Other types of 
environments, such as air or faeces, were 
not included for simplicity [Colour figure 
can be viewed at wileyonlinelibrary.com]
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considered as eDNA here. Our proposed terminology does not re-
quire assumptions about the specific state of the DNA sampled (e.g., 
from cells, tissue fragments, gametes or free-floating), which is also 
generally not assessed, nor can it be told apart based on the se-
quence information. Obviously, this second level of the terminology 
does not need to be used in studies based on PCR-free approaches.

In our opinion, our proposed two-level terminology will contrib-
ute to clarify the scope of eDNA studies. Given the rapidly increasing 
number of studies using eDNA for biomonitoring and bioassess-
ment, it is important to be as precise as possible regarding their ob-
jectives and outcomes, for example by specifying that the particular 
study was conducted using water eDNA and focusing on fish eDNA. 
A terminological clarity is particularly important for environmental 
managers who are not always aware of the various opportunities 
offered by new technology. Restricting the use of the term solely 
to tracing the large-sized organisms is drawing attention away from 
what we see as the most prominent application of eDNA technology, 
namely being a unique tool capable of providing a global assessment 
of ecological status including different biological quality elements 
at a time. We are convinced that retaining the original broad defini-
tion of eDNA highlighting its universal character will contribute to 
expanding the field of eDNA research and its successful application.
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