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ABSTRACT: Rivers are among the most threatened fresh-
water ecosystems, and anthropogenic activities are affecting
both river structures and water quality. While assessing the
organisms can provide a comprehensive measure of a river’s
ecological status, it is limited by the traditional morphotaxon-
omy-based biomonitoring. Recent advances in environmental
DNA (eDNA) metabarcoding allow to identify prokaryotes
and eukaryotes in one sequencing run, and could thus allow
unprecedented resolution. Whether such eDNA-based data
can be used directly to predict the pollution status of rivers as
a complementation of environmental data remains unknown.
Here we used eDNA metabarcoding to explore the main
stressors of rivers along which community structure changes, and to identify the method’s potential for predicting pollution
status based on eDNA data. We showed that a broad range of taxa in bacterial, protistan, and metazoan communities could be
profiled with eDNA. Nutrients were the main driving stressor affecting communities’ structure, alpha diversity, and the
ecological network. We specifically observed that the relative abundance of indicative OTUs was significantly correlated with
nutrient levels. These OTUs data could be used to predict the nutrient status up to 79% accuracy on testing data sets. Thus, our
study gives a novel approach to predicting the pollution status of rivers by eDNA data.

■ INTRODUCTION

Rivers are exposed to multiple stressors, particularly those
derived from anthropogenic pollutants, such as excess nutrient,
heavy metals, pesticides, or pharmaceuticals.1,2 Severe
pollution reduces the rivers’ provisioning of goods and
ecosystem services.3 To alleviate rivers’ degradation, and to
finally achieve “nontoxic environment” and “good health
status” goals, governments implement laws and regulations to
manage and improve the water environment.4 For example, the
European Water Framework Directive (WFD, adopted in
2000) explicitly requires the vast majority of water bodies in
member states to reach a “good status” by 2015.5 While
attempts to monitor chemical contents in waters can directly
evaluate the pollution status of rivers, the potential biotoxicity
and ecological effects of pollutants can rarely be sufficiently
assessed.6 Alternatively, biological communities give a
comprehensive indication of the physical and chemical
properties of rivers, and are both the focus of river protection
but can also be used as monitoring targets. Consequently, they

are monitored in the context of applied environmental
protection strategies in several countries.7 This shift from a
focus on chemicals to the focal community to measure quality
of waters is widely recognized.5,8 However, due to the
limitations of the traditional morphology-based species
identification approach, river monitoring is extremely time-
consuming, labor-intensive, and taxonomic expertise demand-
ing.8,9

Environmental DNA (eDNA) metabarcoding provides a fast
and efficient way to uncover biodiversity information, which by
now has routinely been used to detect individual species10,11 or
biological communities in aquatic ecosystem.12,13 The eDNA
approach has a highly sensitive detection capability and is
noninvasive to the organisms themselves,14 which gives an
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unprecedented opportunity to overcome bottlenecks of
traditional morphology-based biomonitoring.15 Although en-
vironmental conditions have been speculated to influence
eDNA persistence in aquatic ecosystems,16,17 a recent study
shows that the decay rate of eDNA can be modeled using first-
order constant,18 and may thus be a rather robust tool. By
incorporating eDNA shedding and decay rates, the transport of
eDNA can be effectively modeled to estimate species richness
in a natural river ecosystem.19 Comparisons of biodiversity
information from eDNA metabarcoding and morphological
data sets obtain similar results for freshwater communities.9,20

In addition to detecting a set of target taxa, eDNA
metabarcoding can also provide access to the broadest set of
biodiversity present in the environment.12,14 For example, a
tree of life metabarcoding or meta-systematics approach has
been applied to get a holistic biodiversity perspective at the
ecosystem level.14 This biodiversity revealed by eDNA
metabarcoding carries rich information on the local commun-
ity, but what advantages it carries beyond identifying richness
information only is still largely underexplored.
Recently, taxonomy-free molecular indices suggest new

measurements for ecosystem assessment using supervised
machine learning models.21 This method provides a new way
to monitor water pollution using high-throughput sequence
data. However, the calculation of these taxonomy-free
molecular indices still needs information such as taxon-specific
ecological weights or categories of tolerance to disturb-
ance.21,22 Especially for bacteria or foraminifera that play an
important role in ecological processes, these communities with
a large proportion of eDNA reads could not be used to
calculate indices due to the lack of relevant ecological weights
information.23 Compared with biotic indices, the composition
and trophic structure of species in a community may better
reflect and capture interactions between the pollution of an
ecosystem and the subsequent changes in the ecological
network. For example, the abundance of arthropods decreases
when pyrethroid is discharged into water, causing algal blooms
due to the lack of herbivores.24 Such changes in a river’s status
can only be understood and predicted by changes in species
composition data. Given that eDNA has the advantage of
monitoring multiple communities in one sequencing run,14 it
offers a promising tool to assess the species composition of
rivers. However, whether such eDNA data can also directly
predict the river’s pollution status is still insufficiently known.
Here, we used eDNA metabarcoding to profile the species

assemblages in rivers from the Yangtze River Delta (YRD), in
order to evaluate the method’s ability to associate community
data with pollution levels. The YRD area is one of the most
developed regions in China, and serves as an indispensable
water resources for agriculture and industry of 150 million
people in eastern China. Large amounts of pollutants
discharged into the YRD in recent decades make the study
of these rivers a high priority for human welfare. Hence, the
main purposes of our study are 3-fold: (1) to profile species
assemblages in rivers using eDNA metabarcoding; (2) to
explore the main stressors of rivers along which community
structure changes, and to rebuild a known stressor gradient
based on environmental variables such that it can reveal
multiple communities’ response under this known stressor
gradient; and (3) to predict the pollution status of rivers using
eDNA data, and to identify the method’s accuracy by
comparing testing and training data sets.

■ MATERIALS AND METHODS

Study Area and eDNA Sampling. Twenty-two sites were
sampled from the YRD area during April and May 2016
(Figure S1 of the Supporting Information, SI). These sites are
located in tributaries of the lower reach of Yangtze River (5
sites, TYR), the Qinhuai River (7 sites, QHR) and the
tributaries of Tai Lake (10 sites, TTL), respectively. Qinhuai
River is a tributary of Yangtze River flowing through Nanjing
City. Tai Lake is the third largest freshwater lake in China as an
indispensable water resources for agriculture and industry
products.25 These rivers are exposed to various sources of
anthropogenic pollutants.26,27 At each site, 10 L of surface
water were sampled using sterile bottles (Thermo Fisher
Scientific, U.S.A.), and immediately transferred on ice. One
liter per site was used for eDNA metabarcoding analysis
(which has been shown to be sufficient in many set-
tings),14,28,29 the remaining 7 L for chemical analyses (see
next section). For the eDNA analysis, filtration was done
within less than 6 h after sampling. Four independent
extractions of 200−250 mL were made from each 1 L water
sample by filtering across a Millipore 0.22 μm hydrophilic
nylon membrane (Merck Millipore, U.S.A.). The total volume
of water filtered for each membrane disc depended on the
turbidity of water. The membrane discs containing captured
eDNA were placed in 5.0 mL centrifugal tubes, were
immediately frozen and stored at −20 °C until DNA
extraction.

Analysis of Environmental Variables. Twenty-two
environmental variables were measured for each sampling
site. Water temperature (WT), pH, and dissolved oxygen
(DO) were measured using YSI water quality analyzer in situ
(YSI Incorporated, U.S.A.). For each site, the seven 1-L surface
water samples were used to measure basic water quality
variables, including permanganate index (COD), total
phosphorus (TP), total nitrogen (TN), nitrate (NO3

−), nitrite
(NO2

−), ammonia nitrogen (NH4
+), and biochemical oxygen

demand (BOD) following standard methods (NEPB, 2002),
respectively. For heavy metals, 1 L surface water was diluted
with 2% HNO3 and filtered through a 2.5 μm membrane filter
(Whatman, U.K.). We then determined the concentration of
Cr, Mn, Ni, Cu, Zn, As, Cd, and Pb using inductively Coupled
Plasma Mass Spectrometry (ICP-MS). For organic chemicals,
1 L surface water was analyzed by a Thermo Ultimate 3000
high performance liquid chromatograph (Thermo Fisher,
U.S.A.) coupled to a quadrupole-orbitrap instrument (Thermo
QExactive Plus) equipped with a heated electrospray
ionization (ESI) source (details shown in SI). These organic
chemicals were classified into four major classes, including
pesticide, medical drug, industrial processing aid (IPA), and
personal care (PerC) components. Detailed information on
these chemicals is based on Peng et al.25

DNA Extraction, PCR Amplification, and Next Gen-
eration Sequencing. eDNA was extracted directly from the
filter membrane discs and blank controls (autoclaved tap
water) with a DNeasy PowerWater Kit (Qiagen Canada Inc.,
ON, Canada) following the manufacturer’s protocol. Multiple
PCR assays were carried out for the target gene following the
previously published protocol.13 Briefly, a universal eukaryotic
primer pair (1380F: TCCCTGCCHTTTGTACACAC;
1510R: CCTTCYGCAGGTTCACCTAC) was used to
amplify the 130 bp fragment of the hypervariable region of
18S rRNA genes.30 In analogy, the 180 bp fragment of
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bacterial 16s rRNA genes was amplified using the modified V3
primer pair (341F: ACCTACGGGRSGCWGCAG; 518R:
GGTDTTACCGCGGCKGCTG).31 To pool and sequence
all samples in one sequencing run, unique 12-nt nucleotide
codes (also known as tags) were added to the 5′-ends of the
forward or reverse primers. All primers were synthesized by
Shanghai Generay Biotech Co., Ltd. Each eDNA sample was
amplified in three PCR replicates to minimize potential PCR
bias, and the products were subsequently combined. PCR
negative controls (nuclease-free water as DNA template) were
included for all assays. PCRs were carried out in 50 μL reaction
mixture, including 31 μL of ddH2O, 10 μL of 5× Phusion
Green HF Buffer, 1 μL of 10 mM dNTPs, 2.5 μL of each
primer (10 μM), 2.5 μL of DNA template and 0.5 μL of
Phusion Green Hot Start II High-Fidelity DNA Polymerase
(Thermo Fisher Scientific, U.S.A.). The amplification protocol
was as follows: initial denaturation at 98 °C for 30 s followed
by 30 cycles at 98 °C for 5 s, 62 °C for 30 s, and 72 °C for 15 s,
with a final extension at 72 °C for 7 min, and the PCR was
cooled to 4 °C until removed. PCR products were visualized
on a 2% agarose gel to check the expected size of PCRs yielded

amplicons. Thereafter, the PCR products were purified using
the E-Z 96 Cycle Pure Kit (Omega, U.S.A.). All purified PCR
products were quantified using Qubit dsDNA HS Assay Kits
(Invitrogen, U.S.A.), and were pooled equally for subsequent
sequencing. Sequencing adaptors were linked to purified DNA
fragments with the Ion Xpress Plus Fragment Library Kit
(Thermo Fisher Scientific, U.S.A.) following the manufac-
turer’s protocol. Finally, all samples were diluted to a final
concentration of 100 pM. Sequencing templates were prepared
with Ion OneTouch 2 and sequenced in the Ion Proton
sequencer (Life Technologies, U.S.A.).
Low quality raw sequence (mean quality <20, scanning

window = 50, sequences contained ambiguous “N”, homopol-
ymer and sequence length: < 100 bp) were discarded using
split_libraries.py script in QIIME toolkit.32 The cleaned reads
were sorted and distinguished by unique sample tags, all
sequences were clustered into OTUs following the UPARSE
pipeline at cutoff value of 97% nucleotide similarity. The
taxonomy annotation for each OTUs in bacterial, protistan,
and metazoan community was assigned against the Greengenes
database33 or the Protist Ribosomal Reference database34

Figure 1. Assignment of eDNA metabarcoding sequences recovered from rivers in this study. (a) Line graph representing the number of each
taxonomic rank in different communities, resolved to the highest taxonomic resolution for each OTUs, respectively. (b) Taxonomic phylogenetic
tree, built using “tree of life” (ToL) metabarcoding, and bar graphs showing the family numbers per phylum (only families with >3 OTUs are
shown).
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using align_seqs.py script, and OTUs number and Shannon
entropy index of each community were calculated using
alpha_diversity.py script in QIIME toolkit.32

Statistical Analyses. First, eDNA metabarcoding data sets
were summarized in separate OTUs table, the taxonomic
phylogenetic tree was built using the interactive tree of life
(iTOL) online tool.35 Then, to meet the prerequisite of
parametric tests, all environmental variables except pH were
log(x + 1) transformed and normalized. To extract the main
components explaining the variance of the environmental
variables, a principle component analysis (PCA) was
performed with the Kaiser-Meyer-Olkin (KMO) and Bartlett’s
sphericity test, eigenvalues >1 and absolute r > 0.50 were taken
as criterion for the extraction of the principal components
(PC) and the strongly correlation between PC and environ-
mental variables, respectively.36 After, to rebuild a known
stressor gradient, all samples were split into three levels
(named low, medium and high level) using the one-third of the
PC1 distribution as boundaries.37 To detect the difference of
environmental variables between each level, nonparametric
Kruskal−Wallis (K−W) tests were conducted, followed by
post hoc Mann−Whitney-U tests.
To select the significant environmental variables in explain-

ing the variation of bacterial, protistan and metazoan
community structure, forward selection distance-based linear
models (distLM), based on AIC selection criteria, were used.
The significance levels of the variables were assessed by Monte
Carlo permutation tests (999 permutations).13 To illustrate the
variation of communities’ structure among three levels,
nonmetric multidimensional scaling (nMDS) ordination
based on Bray−Curtis (bacteria and protist), and Jaccard
(metazoa) dissimilarity matrices were used and the significant
differences were assessed by permutational multivariate
analyses of variance test (PERMANOVA).38 To identify
major OTUs that were responsible for the difference in
community structure between each level, a SIMPER analysis
was conducted. Using multiple nonlinear regression, we tested
the relations between nutrient (surrogated by PC1) and
Shannon index of each community. Finally, network analysis
was used to explore co-occurrence ecological patterns between
OTUs in complex communities, which might be more difficult
to detect using either the traditional α- or β-diversity index.
Network visualization of the co-occurrence relationships were
generated by SparCC with 100 bootstraps to assign P-values.39

Only robust and significant correlations (|ρ| > 0.7 and “two
tailed” P < 0.01) between nodes were retained in the network.
Indicative OTUs of each level were identified using multipatt

function in the R package Indispecies, the Indictor Values
(IndVal) were measured to reflect the conditional probability
of the OTUs as an indicator, the significance was tested using a
permutation test (nperm = 999). To predict the pollution
status of rivers based on these indicative OTUs data, predictive
models were fitted for three of the four independent
subsamples at each site (training data sets) using multivariate
linear regression models (MLR) implemented in SPSS 22
software. The reliability and significance of each formula was
tested by bootstrap resampling (n = 1000). Finally, the
remaining subsample at each site were used as testing data sets,
to examine the accuracy of predicted values derived from
predictive models compared with actual measured values.
All of the above statistical analyses were performed in the R

statistical language (http://www.r-project.org), GraphPad
Prism 6.01 software, SPSS 22 software and PRIMER7 with

PERMANOVA+ add-on software (PRIMER-E Ltd., Ivybridge,
U.K.). The network was analyzed and visualized using
Cytoscape V3.40

■ RESULTS AND DISCUSSION
eDNA Metabarcoding Provided a Wide Spectrum of

Taxonomic Diversity. We detected a total of 1 640 832
bacterial reads, 3 079 304 protistan reads and 362 672
metazoan reads across all samples after stringent quality
filtering (Table S1). These eDNA data were assigned to 5850

Figure 2. Results of principle component analysis (PCA) on 22
environmental variables (a) and the linear relationship between the
first principle components (PC1) and six nutrient-related parameters
(b). The bubble size represents the scores of the PC1 in each samples,
and the blue line points to the direction of the increase for a given
variable, only the strongly correlation (absolute r > 0.5) between PC1
and variables are shown (a); the dashed lines are the 95% confidence
interval (CI) fitting value (b).
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bacterial OTUs, 3475 protistan OTUs and 274 metazoan
OTUs (Table S1), annotating (to the highest phylogenetic
level resolved) 51 phyla (98.8% of the total OTUs), 188
classes (96.8% OTUs), 347 orders (79.9% OTUs), 714
families (70.9% OTUs), 623 genera (46.9% OTUs), and 355
species (25.9% OTUs) (Figure 1a). The majority of taxonomic
lineages at family level belonged to Chlorophyta, Ciliophora,
and Proteobacteria (Figure 1b), the relative abundance of
these taxa were also disproportionally high (Figure S2). By
using different PCR assays, a wide taxonomic lineage including
Proteobacteria, Actinobacteria, Chloroflexi, Ciliophora, Chlor-
ophyta, Ochrophyta, Arthropoda, and Mollusca were recov-
ered from the samples. Recent studies have also demonstrated
that eDNA methodologies can be used to assess a broad range
of prokaryotes and eukaryotes from a variety of environments
(e.g., freshwater, seawater, and soil).12,14,41 However, there are
still some issues (e.g., primer bias, sequencing artifacts and/or
contamination) of the eDNA methodologies to be improved,15

and the taxonomic resolution largely depends on the choice of
primer sets and corresponding reference database.42 For
example, the chloroplastic rbcL and nuclear ribosomal 18S
genes (e.g., V4 and V9 region) have been used in algae
studies,42−44 however, there have been controversial in the
taxonomic resolution of algae by these primers. These studies
suggested that the rbcL and V4 region of 18S are more suitable
for diatom,42,44 yet V9 region of 18S could detect a wide range
of taxonomic groups.43 The same issue of primer bias may be
found in this study, for example, metazoans have fewer
sequences than eukaryotic protists using single V9 region of

18S. Hence, multiple PCR assays using different gene regions
are strongly advocated to assess biota in monitoring
biodiversity.

Nutrient Identified As a Major Stressor of Rivers. The
values of the 22 environmental variables assessed varied largely
across samples. Subsequently, all of these variables were
reduced to five principal components based on PCA (details
were available in SI Table S2). The first two principal
components (PC1 and PC2) explained 40.40% of variances of
the total variables (Figure 2). Therein, nutrients (including
DO, NO3

−, NH4
+, TN, and TP) were most strongly associated

with the first principal component (PC1, Table S2, and Figure
2), which explained 23.70% of the variation in the data. We
then used this structuring along the PCA axes as our main
environmental descriptors based on which community shifts
we wanted to study. Nutrients are relevant in this context, as
they have become one of the most severe environmental
problems in this region after decades of dense input of
nutrients from anthropogenic activities.45,46 We used the PC 1
as a new predictor representing nutrient gradients, and then
split all samples into three levels (hereafter called “Low
nutrient”, “Medium nutrient”, and “High nutrient”) using the 33rd

and 66th percentile of the PC1 distribution as boundaries.37 As
expected, six nutrient-related parameters were significantly
different among these three levels. Specifically, the concen-
trations of NH4

+, TN, and TP in High nutrient levels were
significantly higher than those in the Low nutrient level (Figure
S3), while the concentration of NO3

−, pH, and DO had an
opposing distribution. The other 16 variables (BOD, COD,

Table 1. Distance-Based Linear Model (distLM) Results of Bacterial, Protistan and Metazoan Community Structures against
22 Environmental Variables in the Full Analysis (9999 Permutations)a

marginal tests forward selection sequential tests

community variables pseudo-F prop. (%) pseudo-F prop. (%) pumul. (%)

bacteria pH 6.85 7.54 18.48 18.03 18.03
NO3

− 4.88 5.49 8.42 7.55 25.58
NH4

+ 12.78 13.21 8.26 6.81 32.39
Ni 3.34 3.82 8.59 6.48 38.87
COD 4.14 4.70 7.40 5.18 44.04
TN 4.65 5.25 6.28 4.12 48.16
Cd 9.79 10.44 8.92 5.32 53.48
TP 4.69 5.29 6.10 3.42 56.90
Mn 3.67 4.18 6.71 3.50 60.40

protist NH4
+ 8.50 9.49 8.50 9.49 9.49

BOD 7.65 8.63 8.92 9.08 18.58
NO3

− 7.06 8.02 9.90 9.06 27.64
PerC 6.90 7.85 7.53 6.37 34.01
TP 5.51 6.37 7.71 6.00 40.01
Cu 5.52 6.38 6.89 4.99 45.00
DO 7.23 8.20 8.48 5.59 50.59
Cd 7.90 8.89 10.11 5.94 56.53
NO2

− 6.08 6.98 11.04 5.71 62.24
metazoa NH4

+ 5.07 6.49 5.07 8.49 6.49
NO2

− 3.12 4.10 4.48 5.48 13.97
Cd 4.69 6.03 6.23 5.11 19.08
TN 3.98 5.64 4.28 4.66 23.74
Cr 2.76 3.64 3.37 3.55 27.29
PerC 2.28 2.72 2.43 2.51 29.80
TP 3.26 4.27 3.13 3.13 32.93
drug 2.40 3.18 2.74 2.67 35.61

aProportion of variation explained (Prop. (%)) and cumulative proportion of variation explained (Cumul. (%)) are given. Environmental variables
not significantly correlated with community structure (P < 0.05) are not shown.
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and heavy metal, and other chemicals) were not significantly
different among the three levels.
Changes of Communities’ Structure Were Mainly

Due to Nutrient. Effects of nutrient on communities’
structure were greater than other environment variables. On
the basis of distLM analysis, the most parsimonious models
explained 60.40%, 62.24%, and 35.61% of the total variation in
bacterial, protistan and metazoan communities’ structure,
respectively (Table 1). In particular, most of the variance in
these communities’ structure could be explained by nutrient
levels (approximately 40%, 30%, and 22%, respectively). These
results were coinciding exactly with the PCA of environmental
variables indicating that nutrients were the driving stressor of
these rivers. Hence, the pollution status of rivers may be

directly revealed by such species information, and may not
need to have environmental variables being monitoring.8

Importantly, the biological assessment gives an integrated
measure of the nutrient exposition of a community over time,
while chemical measurements usually only cover one specific
time point. To verify this hypothesis, we then analyzed the
trend of communities’ change under known stressor gradients
(nutrient gradients), which is expected to identify some taxa
for characterizing the nutrient status in rivers.
First, we found that the dominant taxa in bacterial, protistan,

and metazoan communities varied across the nutrient gradients
(Figure 3a). Some taxa (Myxozoa, Nitrospirae, Foraminifera
and Stramenopiles, Mollusca, and Arthropoda) were primarily
identified in Low and/or Medium nutrient level, and taxa in

Figure 3. Distribution of dominant taxonomic OTUs at phylum or class level (a) and nonmetric multidimensional scaling (nMDS) analysis of
communities’ structure (b). The position in the triangle indicates the relative abundance of each phyla or class taxa in bacterial, protistan and
metazoan community (a) across three nutrient levels, and the size of the circle represented the relative abundance of each taxon. Significant
differences based on Bray−Curtis (bacteria and protist) and Jaccard (metazoa) dissimilarity matrices in the communities’ structure are found
among the three levels (b). TTL, QHR, and TYR are the abbreviations of the tributaries of Tai Lake, the Qinhuai River, and the tributaries of
Yangtze River, respectively.
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Opisthokonta_unknown, Choanoflagellida, Centroheliozoa,
Gastrotricha, and Rotifera were dominant in High nutrient
level. These results were consistent with other studies showing
that eutrophication altered the composition of commun-
ities.47,48 For example, Mollusca and Foraminifera were
sensitive to nutrient,49,50 Rotifers increased along a gradient
of increasing nutrient levels.51 Besides, as a chemolithoauto-
trophic nitrite-oxidizing bacterium,52 Nitrospirae was primarily
found in Low and Medium nutrient level, which might explain
why the concentration of NO3

− in these two levels were
greater.
Then, the communities’ structure also largely varied

following the nutrient gradient rather than across regions
(Figure 3b), which were further identified as significant by the
PERMANOVA tests (pseudo-Fbacteria = 5.187, P < 0.001;
pseudo-Fprotist = 7.854, P < 0.001; pseudo-Fmetazoa = 9.188, P <
0.001). The SIMPER analyses revealed that Microcystis sp.
(Cyanobacteria, OTU625), Mycobacterium sp. (Actinobacteri,
OTU368), and ACK.M1 (Actinobacteria, OTU280) in
bacterial communities were the major contributors to the
dissimilarity across each level (Table S3). Mediophyceae sp.
(Bacillariophyta, OTU726), Cryptomonas sp. (Cryptophyta,
OTU544), and Strobilidiidae sp. (Ciliophora, OTU104) in
protozoan communities and Sinocalanus sp. (Arthropoda,
OTU48), Leiosolenus sp. (Mollusca, OTU87), and Brachionus
calycif lorus (Rotifera, OTU103) in metazoan communities
were the main contributors to the dissimilarity. As is well-
known, Microcystis became a dominant taxon during

cyanobacterial bloom periods53 and could produce highly
stable and potent polypeptides (microcystins (MCs)) that
pose a serious threat to public health.46,54 Nutrient enrichment
combined with high ambient temperature was regarded as the
main stressor that influenced on Microcystis blooms.55 Besides,
some laboratory toxicity studies found that some species in
Brachionus could be more tolerant of ammonia than
cladocerans and copepods.56,57

Alpha Biodiversity and Ecological Interaction Net-
work Varied with Nutrient Status. Alpha biodiversity
(Shannon index) indicated a significantly hump-shaped
response to nutrient in bacterial, protistan and metazoan
communities (Figure 4a−c). Our results contribute to growing
evidence of nonlinear responses of aquatic assemblages to
nutrient enrichment.58,59 Although linear responses of
biodiversity to nutrient enrichment were also reported,60

some factors might frequently obscure natural nonlinear
responses of multiple taxa to stressors. For example, biotic
interaction could change structure of the food web within an
ecosystem,61 so that the consumer−resource interactions in
communities were often affected by other species.62,63 The top
predator species could determine how communities’ con-
ditions changed across time and space.64 The network analysis
verifies the above inference, such that the ecological interaction
network between OTUs in each community revealed a distinct
network topology in each nutrient level (Figure 4d). The
number of nodes and edges in network were higher in Low
nutrient, followed by High and Medium nutrient (Table S4). In

Figure 4. Responses of Shannon index to nutrient (surrogated by PC1, a−c), and ecological interaction network between bacterial, protistan and
metazoan communities in each nutrient level (d). Nonlinear polynomial regression included 95% CI (the dash lines) in bacteria (quadratic),
protistan (quadratic), and metazoan (cubic) communities. The correlations between each OTUs were generated by SparCC with 100 bootstraps to
assign P-values. Only when the absolute r > 0.7 and a “two tailed” P value < 0.01, the nodes and edges in the network remained.
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addition, more complex ecological interactions in Low and
High nutrient level according to the betweenness centrality and
average closeness centrality parameters.65

Novel OTUs Based Indicator Could Rapidly Predict
Nutrient Status of Rivers. Indicator analysis identified 960
OTUs in different taxa (i.e., Ochrophyta, Ciliophora, Actino-
bacteria, Proteobacteria and Chlorophyta) that were character-
istic of each nutrient level (Figure S4). These OTUs included
their trophic positioning and responsiveness to a range of

nutrient gradients.42,66 In addition, the relative abundance of
indicative OTUs in Ochrophyta, Ciliophora, Arthropod,
Proteobacteria, Cryptophyta and Cyanobacteria were signifi-
cantly negatively correlated with nutrient, indicative OTUs in
Actinobacteria, Chlorophyte, and Rotifera could increase with
nutrient gradient (Figure 5a). Here it is noteworthy that the
relationship between the relative abundance of indicative
OTUs in cyanobacteria and nutrient was contradictory to
previous study.55 One possible explanation is that more than

Figure 5. Relationship between nutrient (surrogated by PC1) and the relative abundance of indicative OTUs, the dashed lines are the 95% CI
fitting value, only significant correlation (P < 0.05) are shown (a). Comparison between the PC1 predicted value given by the indicative OTUs in
test samples and the PC1 actual value derived from environmental variables, the red diagonal lines represent the ratio (1:1) between the predicted
and measured values (b).
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half of sites had reached eutrophication or severe eutrophica-
tion status (Table S2). A previous study within this study area
confirmed this phenomenon that high cyanobacteria cell
concentrations were negatively correlated with ammonia,
especially in appropriate external water temperature.67

Recently, palaeo-limnological views based on subfossil DNA
also supported strong correlations between trophic status
changes and microbial eukaryotes community succession.68 By
contrast, the largest proportions of these indicators were
Ochrophyta, particularly more than 50% of OTUs in
Ochrophyta belonging to Cyclotella sp., Nitzschia sp., Melosira
sp., or others. (Bacillariophyceae). Diatoms inhabit a variety of
waterbodies and different species could respond differently and
characteristically to environmental status.69 In particular, the
Nitzschia sp. has been used to characterize the nutrient status
in waters.70 Besides, diatoms were considered as the most
sensitive group to TP, and the occurrence of OTUs declined
with increasing concentrations of TP.38

Using identified indicative OTUs, we could identify the
nutrient status with 41%−75% accuracy on training data sets,
but the predictive ability of single communities was lower than
combined communities’ data (Table 2). When comparing the
nutrient (surrogated by PC1) predicted value with the actual
value using test data sets, there was a good consistency
between each value (R2 = 0.51−0.79, Figure 5b). However, we
also found underprediction or overprediction of the nutrient
status using single community data. For example, the predicted
value in Low nutrient level was higher than actual ones using
bacterial or metazoan data, but the lower predicted value was
occurred in High nutrient level. Besides, almost all predictions
were higher than the actual ones in protistan data.
Corresponding to single community data, we achieved up to
79% accuracy to predict the nutrient status via combining
multiple communities’ data. A recent study has also
demonstrated that multitrophic metabarcoding biotic index
has higher predictive potential for pollutant status.23 In another
study, it has also been found that sequence data was a better
predictor than environmental variables to predict cyanobacte-
rial blooms.28 In short, eDNA metabarcoding offers novel and
promising tools to monitor and predict anthropogenic
contamination of aquatic ecosystems (e.g., rivers, lakes, marine
ecosystems) by DNA sequence-based data.
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Gentil, L.; Beja, P.; Boggero, A.; Borja, A.; Bouchez, A.; Cordier, T.;
Domaizon, I.; Feio, M. J.; Filipe, A. F.; Fornaroli, R.; Graf, W.;
Herder, J.; van der Hoorn, B.; Iwan Jones, J.; Sagova-Mareckova, M.;
Moritz, C.; Barquín, J.; Piggott, J. J.; Pinna, M.; Rimet, F.; Rinkevich,
B.; Sousa-Santos, C.; Specchia, V.; Trobajo, R.; Vasselon, V.; Vitecek,
S.; Zimmerman, J.; Weigand, A.; Leese, F.; Kahlert, M. The future of
biotic indices in the ecogenomic era: Integrating (e)DNA
metabarcoding in biological assessment of aquatic ecosystems. Sci.
Total Environ. 2018, 637−638, 1295−1310.
(9) Bista, I.; Carvalho, G. R.; Walsh, K.; Seymour, M.; Hajibabaei,
M.; Lallias, D.; Christmas, M.; Creer, S. Annual time-series analysis of
aqueous eDNA reveals ecologically relevant dynamics of lake
ecosystem biodiversity. Nat. Commun. 2017, 8, 14087.
(10) Dougherty, M. M.; Larson, E. R.; Renshaw, M. A.; Gantz, C. A.;
Egan, S. P.; Erickson, D. M.; Lodge, D. M. Environmental DNA
(eDNA) detects the invasive rusty crayfish Orconectes rusticus at low
abundances. J. Appl. Ecol. 2016, 53 (3), 722−732.
(11) Sansom, B. J.; Sassoubre, L. M. Environmental DNA (eDNA)
Shedding and Decay Rates to Model Freshwater Mussel eDNA
Transport in a River. Environ. Sci. Technol. 2017, 51 (24), 14244−
14253.
(12) Deiner, K.; Fronhofer, E. A.; Machler, E.; Walser, J. C.;
Altermatt, F. Environmental DNA reveals that rivers are conveyer
belts of biodiversity information. Nat. Commun. 2016, 7, 12544.
(13) Xie, Y.; Hong, S.; Kim, S.; Zhang, X.; Yang, J.; Giesy, J. P.;
Wang, T.; Lu, Y.; Yu, H.; Khim, J. S. Ecogenomic responses of benthic
communities under multiple stressors along the marine and adjacent
riverine areas of northern Bohai Sea, China. Chemosphere 2017, 172,
166−174.
(14) Stat, M.; Huggett, M. J.; Bernasconi, R.; DiBattista, J. D.; Berry,
T. E.; Newman, S. J.; Harvey, E. S.; Bunce, M. Ecosystem
biomonitoring with eDNA: metabarcoding across the tree of life in
a tropical marine environment. Sci. Rep. 2017, 7 (1), 12240.
(15) Deiner, K.; Bik, H. M.; Machler, E.; Seymour, M.; Lacoursiere-
Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D. M.; de Vere,
N.; Pfrender, M. E.; Bernatchez, L. Environmental DNA metabarcod-
ing: Transforming how we survey animal and plant communities. Mol.
Ecol. 2017, 26 (21), 5872−5895.
(16) Barnes, M. A.; Turner, C. R.; Jerde, C. L.; Renshaw, M. A.;
Chadderton, W. L.; Lodge, D. M. Environmental Conditions
Influence eDNA Persistence in Aquatic Systems. Environ. Sci. Technol.
2014, 48 (3), 1819−1827.

(17) Jerde, C. L.; Olds, B. P.; Shogren, A. J.; Andruszkiewicz, E. A.;
Mahon, A. R.; Bolster, D.; Tank, J. L. Influence of Stream Bottom
Substrate on Retention and Transport of Vertebrate Environmental
DNA. Environ. Sci. Technol. 2016, 50 (16), 8770−9.
(18) Sassoubre, L. M.; Yamahara, K. M.; Gardner, L. D.; Block, B.
A.; Boehm, A. B. Quantification of Environmental DNA (eDNA)
Shedding and Decay Rates for Three Marine Fish. Environ. Sci.
Technol. 2016, 50 (19), 10456−10464.
(19) Deiner, K.; Altermatt, F. Transport distance of invertebrate
environmental DNA in a natural river. PLoS One 2014, 9 (2), e88786.
(20) Stoeckle, M. Y.; Soboleva, L.; Charlop-Powers, Z. Aquatic
environmental DNA detects seasonal fish abundance and habitat
preference in an urban estuary. PLoS One 2017, 12 (4), e0175186.
(21) Cordier, T.; Esling, P.; Lejzerowicz, F.; Visco, J.; Ouadahi, A.;
Martins, C.; Cedhagen, T.; Pawlowski, J. Predicting the Ecological
Quality Status of Marine Environments from eDNA Metabarcoding
Data Using Supervised Machine Learning. Environ. Sci. Technol. 2017,
51 (16), 9118−9126.
(22) Apotheloz-Perret-Gentil, L.; Cordonier, A.; Straub, F.; Iseli, J.;
Esling, P.; Pawlowski, J. Taxonomy-free molecular diatom index for
high-throughput eDNA biomonitoring. Mol. Ecol. Resour. 2017, 17
(6), 1231−1242.
(23) Keeley, N.; Wood, S. A.; Pochon, X. Development and
preliminary validation of a multi-trophic metabarcoding biotic index
for monitoring benthic organic enrichment. Ecol. Indic. 2018, 85,
1044−1057.
(24) De Laender, F.; Rohr, J. R.; Ashauer, R.; Baird, D. J.; Berger, U.;
Eisenhauer, N.; Grimm, V.; Hommen, U.; Maltby, L.; Meliaǹ, C. J.
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