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Abstract

Aim: Theory and experiments strongly support the importance of interactive effects

of multiple factors shaping biodiversity, although their importance rarely has been

investigated at biogeographically relevant scales. In particular, the importance of

higher order interactions among environmental factors at such scales is largely

unknown. We investigated higher order interactions of environmental factors to

explain diversity patterns in a metacommunity of aquatic invertebrates at a biogeo-

graphically relevant scale and discuss the findings in an environmental management

context.

Location: All major drainage basins in Switzerland (Rhine, Rhone, Ticino and Inn;

41,285 km2).

Methods: Riverine a-diversity patterns at two taxonomic levels (family richness of

all benthic macroinvertebrates and species richness of Ephemeroptera, Plecoptera

and Trichoptera) were examined at 518 sites across the basins. We applied a novel

machine learning technique to detect key three-way interactions of explanatory

variables by comparing the relative importance of 1,140 three-way combinations for

family richness and 680 three-way combinations for species richness.

Results: Relatively few but important three-way interactions were meaningful for

predicting biodiversity patterns among the numerous possible combinations. Specifi-

cally, we found that interactions among elevational gradient, prevalence of forest

coverage in the upstream basin and biogeoclimatic regional classification were dis-

tinctly important.

Main conclusion: Our results indicated that a high prevalence of terrestrial forest

generally sustains riverine benthic macroinvertebrate diversity, but this relationship

varies considerably with biogeoclimatic and elevational conditions likely due to com-

munity composition of forests and macroinvertebrates changing along climatic and

geographical gradients. An adequate management of riverine ecosystems at relevant

biogeographical scales requires the identification of such interactions and a context-

dependent implementation.
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1 | INTRODUCTION

Interactions among ecological drivers represent a major source of

uncertainty in predicting species distributions (Ara�ujo & Guisan, 2006;

Guisan et al., 2006) and biodiversity patterns (Sala et al., 2000)

because it is impossible to predict effects by studying each driver inde-

pendently. This imprecision can lead to “ecological surprises” (sensu

King, 1995), which are defined as an unexpected outcome based on

current ecological knowledge (King, 1995). Interacting ecological dri-

vers either can amplify or weaken individual effects through synergy

or antagonism, respectively, depending on the prevailing context (Har-

vey, Gounand, Ward, & Altermatt, 2017). For instance, interactions

among multiple stressors likely accelerate biodiversity loss (Sala et al.,

2000) and even can be more important than additive effects in fresh-

water, marine and terrestrial communities, as reviewed in Darling and

Côt�e (2008) and Jackson, Loewen, Vinebrooke, and Chimimba (2016).

Current evidence relating to water use and the extent at which

hydrological processes can spread stressors suggests that issues of

multiple stressors are especially acute in freshwater ecosystems

(Ormerod, Dobson, Hildrew, & Townsend, 2010). River ecosystems

are not only among the most diverse but also among the most threat-

ened ecosystems globally (Dudgeon et al., 2006; V€or€osmarty et al.,

2010). Indeed, local biodiversity in running waters is affected by vari-

ous factors across multiple spatial scales, ranging from local to regional

scales (Frissell, Liss, Warren, & Hurley, 1986; O’Neill, DeAngelis,

Waide, & Allen, 1986; Poff, 1997). These factors include catchment

hydrological processes that reflect upstream terrestrial conditions

(Richards, Haro, Johnson, & Host, 1997), connections with adjacent

riparian ecosystems (Harvey, Gounand, Ganesanandamoorthy, & Alter-

matt, 2016; Loreau, Mouquet, & Holt 2003; Soininen, Bartels, Heino,

Luoto, & Hillebrand, 2015; Vannote, Minshall, Cummins, Sedell, &

Cushing, 1980) and linkages of local environments in dendritic river

networks (Altermatt, 2013; Altermatt, Seymour, & Martinez, 2013;

Tonkin et al., 2018; Vannote et al., 1980; Ward, 1989). Previous stud-

ies reported that major ecological surprises sometimes emerge, as

these multiple factors often cause nonlinear interactive effects in

freshwater ecosystems (e.g. Hecky, Mugidde, Ramlal, Talbot, & Kling,

2010; Ormerod et al., 2010).

Although theory and experiments strongly support the impor-

tance of interactive effects of multiple factors in shaping biodiversity

(Darling & Côt�e, 2008; Jackson et al., 2016), their importance rarely

has been investigated at biogeographically relevant scales (Gieswein,

Hering, & Feld, 2017). In particular, the importance of higher order

interactions (HOI) among environmental factors at such scales is lar-

gely unknown. We refer to HOI as the interactions among three or

more variables whose effects cannot be explained by any subset of

the tested variables. Not taking HOI into account can lead to a per-

ceived context dependency in observed biodiversity patterns akin to

an ecological surprise (Mayfield & Stouffer, 2017; Sala et al., 2000;

Tonkin, Heino, Sundermann, Haase, & J€ahnig, 2016). A solution to

dissipate ecological surprises caused by HOI could be to build a sta-

tistical model including all possible interaction combinations, but this

is not feasible when several factors simultaneously determine such

patterns (Côt�e, Darling, & Brown, 2016; Gieswein et al., 2017; May-

field & Stouffer, 2017). For instance, the independent effects of 10

drivers can be reasonably tested, but their three-way interaction

effects accounting for 120 combinations are difficult to test statisti-

cally (cf. as a rule of thumb, at least 5–10 independent data points

are needed for each interaction and main factor to be considered;

Burnham & Anderson, 2002). Machine learning algorithms can offer

an alternative approach to study HOI (Hochachka et al., 2007; Kel-

ling et al., 2009; Ryo & Rillig, 2017). Machine learning algorithms

have been developed to account for nonlinearity and HOI among

variables without the requirement that the user specifies a priori

which variables interact.

Here, we investigated HOI of environmental factors across multi-

ple spatial scales to better explain diversity patterns in a riverine

metacommunity. We asked the following questions: (1) are key HOI

of environmental factors detectable from the numerous possible

combinations using a machine learning technique? (2) which environ-

mental factors play a major interactive role? and (3) how can interac-

tive effects among environmental factors be considered for effective

environmental management?

Specifically, we investigated the effects of 76 environmental fac-

tors across regional (landscape) and local scales on a-diversity patterns

of benthic aquatic macroinvertebrates (family and species level) among

rivers (518 sites) in Switzerland. First, we performed variable selection

and estimated the effects of environmental factors individually, using

a random forest (RF) algorithm (Breiman, 2001; Cutler et al., 2007).

Then, we ranked the relative importance of all the three-way interac-

tions of the selected variables (1,140 and 680 combinations for family

and species level respectively) and examined interactive effects.

This study focused on three-way interactions only because HOI

characteristics are largely unknown even at that minimal order (i.e.

three way). In addition, comparisons between different orders of

interactions (e.g. three-way versus four-way interactions) are very

difficult because interactive effects can differ radically at each order

as was shown for three-way versus two-way interactions (e.g. Billick

& Case, 1994 and reference therein).

2 | MATERIALS AND METHODS

Our study used presence–absence data of aquatic macroinverte-

brates in Switzerland, from a governmental monitoring programme

(“Biodiversity Monitoring in Switzerland BDM”; BDM Coordination

Office, 2014). The programme is managed by the Federal Office for

the Environment (BAFU/FOEN). Based on a systematic sampling grid

across Switzerland, stream macroinvertebrates were collected by

trained field biologists using a standardized protocol (BDM Coordina-

tion Office, 2014).

2.1 | Biogeography of Switzerland

Switzerland is a relatively small country (41,285 km2) in the centre of

Europe (Figure 1) composed of different biogeographical units. A large
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part of the country consists of the Alps (50% of the area) and Jura

mountains (10% of the area). North of the Alps, a large, densely popu-

lated central valley, extends from east to west (30% of the area),

whereas several smaller valleys extend into submediterranean cli-

mates, south of the Alps. Switzerland covers a large elevational gradi-

ent, ranging from 193 to 4,634 m a.s.l. The country has a typical

temperate climate with moderate to high precipitation. Several large

European rivers originate in Switzerland, including the Rhine basin

(draining 71% of the country, flowing into the North Sea), the Rhone

basin (draining 20% of the country, flowing into the Mediterranean

Sea), the Po basin (draining 5% of the country, flowing into the Adri-

atic Sea), the Danube basin (draining 3.5% of the country, flowing into

the Black Sea) and the Etsch basin (draining 0.5% of the country, flow-

ing into the Adriatic Sea) (Figure 1). Due to its small size, the Etsch

data were pooled with the Po data in the present study.

2.2 | Study sites and sampling methods

The BDM currently monitors 518 study sites across Switzerland

(Figure 1), representing the diversity of stream macroinvertebrates

in the country (see also Altermatt et al., 2013; Kaelin & Altermatt,

2016; Seymour, Deiner, & Altermatt, 2016; Seymour, Sepp€al€a,

M€achler, & Altermatt, 2016). Sampling was conducted in wadeable

streams, second order or larger in size, and excluded standing

waterbodies, first order streams and large rivers inaccessible by

wading (Stucki, 2010). Each site was sampled once between

2009 and 2014 with seasonal timing of sampling adjusted with

respect to elevation. For instance, the sampling period for a site

was based on local phenology so as to collect as many

macroinvertebrate taxa as possible for a given elevation (Stucki,

2010).
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F IGURE 1 Local taxonomic richness (a-
diversity) of riverine macroinvertebrates in
Switzerland, among 518 biodiversity
monitoring sites: (a) family richness and (b)
EPT species richness. Large lakes and main
rivers are in dark blue. The different major
drainage basins are colour coded on the
map (see also inset): the river Rhine (light
blue) drains into the North Sea, the river
Rhone (pink) drains into the Mediterranean
Sea, the river Danube drains into the Black
Sea (salmon) and the remaining rivers
(green) drain into the Adriatic Sea
[Color figure can be viewed at wiley
onlinelibrary.com]
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The survey was completed using a standard kick-net

(25 9 25 cm, 500 lm mesh) sampling procedure defined in the

Swiss “Macrozoobenthos Level I” module for stream benthic

macroinvertebrates (Altermatt et al., 2013; BDM Coordination

Office, 2014; Stucki, 2010). Briefly, eight kick-net samples were

taken at each site to cover all major microhabitats within an area

(109 the average width) and composited. Different habitat types (in-

cluding various sediment types such as rocks, pebbles, sand, mud,

submerged roots, macrophytes, leaf litter and artificial riverbeds) at

different water velocities were sampled. Samples were preserved in

80% ethanol and returned to the laboratory for processing. In the

laboratory, all benthic macroinvertebrates were sorted and identified

to the family level. The Ephemeroptera, Plecoptera and Trichoptera

(EPT taxa) were identified further to species level by experts using

standardized keys as found in BDM Coordination Office (2014).

2.3 | Diversity (response variables)

We used the number of families (all macroinvertebrates) and the

number of EPT species as response variables. Macroinvertebrate

family richness is a commonly used indicator for assessing the eco-

logical state of running waters (Lenat, 1988), whereas EPT species

richness is one of the most commonly used variables in biodiversity

studies. As species level identifications are often unattainable, higher

order taxa richness is commonly used as a substitute. We conducted

separate analyses for the two levels of taxonomic richness to better

infer general patterns.

2.4 | Environmental factors (explanatory variables)

We used 76 environmental factors (see Appendix S1 in Supporting

Information). Only subsets of these factors were used in previous

studies to explain biodiversity patterns in Swiss rivers (Altermatt

et al., 2013; Kaelin & Altermatt, 2016; Seymour, Deiner, et al.,

2016). For subsequent interpretation purposes only, we grouped fac-

tors into four categories targeting different spatial scales and realms.

Sample collection year was the only variable not falling into any cat-

egory but was included as a covariate to correct for any confounding

effects of time. The four categories included:

1. Regional category—factors determined by the geographical coor-

dinates of a biological sampling site (five variables). This category

included two elevation measures (elevation at the site and the

mean elevation of the catchment upstream of the site), two

catchment classifications (three classes for major catchments and

nine classes for subcatchments) and a biogeoclimatic classifica-

tion (six classes).

2. Landscape category—terrestrial conditions of the upstream

catchment of a biological sampling site (35 variables). Local

instream habitat is regarded as the outlet of a catchment affected

by upstream hydrological processes and terrestrial conditions in

the catchment (Allan, 2004). Analysis considered catchment size

and the relative proportion of land cover types. We used two

land cover classifications. One classification distinguished 23

classes from the entire upstream catchment area (Kaelin & Alter-

matt, 2016) and the other distinguished six classes that consid-

ered influences of the adjacent upstream catchment area to the

local site at lateral buffer distances of 500 m and 5 km (Seymour,

Deiner, et al., 2016).

3. Riverscape category—instream and geometry conditions of the

river network in the upstream catchment of a biological sampling

site (13 variables). This category included size and length of the

river network, a network fragmentation intensity and geomor-

phological (e.g. riverbed slope), hydrological (e.g. mean discharge)

and chemical (e.g. inflowing wastewater volume) conditions.

4. Local category—instream habitat conditions observed in situ at a

biological sampling site (22 variables). This category considered

geomorphological features of channel cross-sections (e.g. width,

depth and their variability), riverbed conditions (e.g. mud deposi-

tion and attached algae) and aquatic conditions (e.g. turbidity and

dissolved iron sulphide concentration).

2.5 | Random forest modelling with variable
selection

We did not exclude any explanatory variable before analysis because

the approach employed can (1) perform variable selection, (2) evalu-

ate the relative importance among highly correlated variables (Berg-

mann, Ryo, Prati, Hempel, & Rillig, 2017; Bradter, Kunin, Altringham,

Thom, & Benton, 2013; Nicodemus, Malley, Strobl, & Ziegler, 2010;

Ryo, Yoshimura, & Iwasaki, 2017) and (3) fairly assess the relative

importance between continuous and categorical variables without

bias (Hothorn, Hornik, & Zeileis, 2006; Strobl, Boulesteix, Kneib,

Augustin, & Zeileis, 2008). We used the RF machine learning algo-

rithm for performing multiple regressions with variable selection

(Hapfelmeier & Ulm, 2013; Ryo & Rillig, 2017).

In short, the RF algorithm uses a model ensemble approach that

constructs a large number of decision tree models (Breiman, Fried-

man, Stone, & Olshen, 1984) and then takes an average from their

outputs as a final output of the algorithm (Breiman, 2001). A deci-

sion tree is a nonparametric approach that partitions a sample into

subsamples to minimize variation within each subsample. The model

searches for an explanatory variable and its threshold value to par-

tition a sample into two subsamples. The searching and partitioning

procedure is done recursively until no better split is found. Employ-

ing the RF algorithm is beneficial when there are too many explana-

tory variables and interactions to model statistically (Breiman,

2001).

The RF algorithm with variable selection by Hapfelmeier and Ulm

(2013) takes two modelling steps. First, it performs a multiple regres-

sion using all explanatory variables to estimate a statistical signifi-

cance for each variable. For each variable, the RF algorithm

estimates a p-value that is defined as the probability that the

observed increase in validation accuracy could be due to chance

alone (Hapfelmeier & Ulm, 2013). We set the significance level to

0.01 with Bonferroni correction by 76 variables (i.e. a = 0.000132)
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to account for Type I error. Second, using only significant variables,

the RF algorithm performs a multiple regression to build the final RF

model and to estimate a relative importance score for each variable.

The relative importance score of each variable is quantified by evalu-

ating how much model accuracy would decrease if the model

removes the effect of a focal variable (Breiman, 1996, 2001).

After variable selection, we ranked the relative importance scores

of the explanatory variables and visualized their modelled relation-

ships to each response variable. Partial dependence plots were used

for visualization (Hastie, Tibshirani, & Friedman, 2009), which delin-

eate modelled associations between a few variables (and their inter-

actions if specified) while marginalizing (averaging) out the effects of

all the other variables. The procedure calculates a partial dependence

score that indicates the relative extent of the response variable. In

our case, the higher the score, the higher taxonomic richness.

Explanatory power is evaluated based on the coefficient of

determination by comparing observed and fitted values as explained

variance. In addition, validation accuracy is evaluated based also on

the coefficient of determination using 1/3 of the samples that were

omitted for parameter fitting, following standard RF procedures

(Breiman, 1996). The RF algorithm avoids overfitting by averaging a

large number of decision tree models, which in turn, minimizes bias

(Breiman, 2001).

The entire script we used is available at github (https://github.c

om/masahiroryo/R_HOI). We used the R script available in Hapfel-

meier and Ulm (2013), which is based on “ctree” and “cforest” func-

tions of the “party” package (Strobl, Hothorn, & Zeileis, 2009) in R

3.3.2 (R Development Core Team, 2016). All parameters in the func-

tions were set to default settings. We set 1,000 decision trees in the

RF model, after confirming that this amount satisfactorily stabilizes a

performance of RF models in comparison to 100 and 500 decision

trees in preliminary analyses. For p-value estimation, each variable

was permuted 5,000 times. The explanatory power was evaluated

using the “cforeststats” function of the “caret” package (Kuhn, 2015).

We used the “mlr” package for partial dependence plots (Bishl et al.,

2016).

2.6 | Assessment and visualization of HOI effects

We quantified the relative importance of three-way interactions of

all possible combinations among the selected variables (see results;

of 76 variables, the variable selection approach chose 20 variables

that accounted for 1,140 combinations (=20C3) for macroinverte-

brate family richness and 17 variables that accounted for 680 com-

binations (=17C3) for EPT species richness). We employed the

approach of Kelly and Okada (2012) that quantifies the relative

importance of variable interactions based on permutation with RF.

As Kelly and Okada (2012) were limited to two-way interactions, we

extended their work to three-way interactions based on mutual

information theory (Anastassiou, 2007; McGill, 1954; Williams &

Beer, 2010). The relative importance score, which quantifies the

degree of effect of the three-way combinations of variables A, B

and C, is defined as:

EðA \ B \ CÞ ¼ E(A)þ E(B)þ E(C)� fE(A [ BÞ þ E(A [ CÞ
þ E(B [ CÞg þ E(A [ B [ CÞ

where E() represents the importance score based on the permutation

approach (Kelly & Okada, 2012). A∩B is the effect of the interaction

between variables A and B, excluding their independent effects. A∪B

is the total effects of variables A and B, including both independent

and interactive effects.

E(A∪B) was calculated by simultaneously permuting variables A

and B and then calculating the mean decrease in validation accuracy

(Kelly & Okada, 2012). E() is quantified for each tree model and then

averaged across all tree models. Eventually, E(A∩B∩C) equals the dif-

ference between synergistic and redundant information (Anastassiou,

2007; Williams & Beer, 2010). Redundant information means that

both variables partially share the same information (cf. correlation). A

value can be either negative (redundant) or positive (synergistic), and

being close to zero indicates no interaction. The R function intimp

we developed is also available at github (https://github.com/masahi

roryo/R_HOI).

After assessing the relative importance for all possible three-way

combinations, we focused on some of the highest values (i.e. the

most synergetic combinations) and visualized some representatives

to confirm interaction patterns, again using partial dependence plots.

We focused on the top 10 combinations. We decided to set this

threshold as an absolute value instead of relative value such as per-

centile because the total number of combinations was unknown

before performing variable selection (e.g. 70,300 combinations would

appear if all 76 variables remain, but only 10 combinations would

appear if 5 variables remain). Note that the mutual information the-

ory approach does not estimate confidence interval and statistical

significance, meaning that we cannot rely on null hypothesis testing

to assess importance. For visualization, we avoided variable combi-

nations where value combinations are physically impossible. For

instance, the elevation at a site cannot be higher than the mean ele-

vation over the upstream catchment.

3 | RESULTS

Macroinvertebrate family richness among sites ranged from 1 to 39

taxa with a median of 20, while EPT species richness ranged from 0

to 36 with a median of 16 (Figure 1). Macroinvertebrate family and

EPT species richness were highly correlated (Pearson’s r = .81). Of

76 explanatory variables, 20 and 17 variables were finally selected

(Figure 2) for the RF models of macroinvertebrate family and EPT

species richness, respectively, and their association patterns were

individually estimated (Figure S1 in Appendix S2). Overall, the

explanatory power was 58% of the variation in macroinvertebrate

family and EPT species richness (validation accuracy: 40% and 35%

respectively).

According to the relative importance of individual factors, regio-

nal and landscape factors were dominant drivers (Figure 2). Eleva-

tion, the relative proportion of forest land cover and biogeoclimatic
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classifications were ranked within the top five for both richness

measures (Figure 2). Specifically, both richness measures were

monotonically declining above 1,000 m, were decreasing where the

relative proportion of forest land cover within any buffer distance

was lower than 20%–30% and were lower in the central Alps regions

than in other regions (Figure 3 and Figure S1).

More than 97% of the possible three-way combinations had

importance scores near zero, that is, between �0.1 and 0.1 (1,124

of 1,140 combinations for macroinvertebrate family richness and

663 of 680 combinations for EPT species richness). Less than 20

combinations exceeded an importance score ≥0.1 for both richness

measures (Figure 4). This indicates that only a few three-way inter-

actions explained both richness measures meaningfully. Same as the

relative importance of individual factors (Figure 2), elevation, the rel-

ative proportion of forest land cover and biogeoclimatic regions

were the most important factors interacting for explaining both rich-

ness measures (Table 1). For instance, the top combination for family

richness revealed a score of 1.2%, which is 13.3 times higher than

the random expectation (100% 9 1/1,140 = 0.088%).

The impact of key factors (Table 1) on diversity patterns was

nonlinear and interactive, as shown in representative examples for

diversity patterns explained by the interactions of biogeoclimatic

Riverscape
Local Regional

Landscape

Relative importance score (%)
5 10 150 20

% aquatic cover (500m)

Elevation

Elevation (mean)
Biogeoclimatic class

% agriculture cover (5km)
% forest cover (5km)

% forest cover
% carbonate rock/silicate rock

% forest cover (500m)
% agriculture cover (500m)

% aquatic cover (5km)
Major drainage basin class

% meadow cover (5km)
Distance to outlet
% settlement cover (5km)
Mud deposition intensity
% deciduous forest/coniferous forest

% vineyard cover

Number of hydropower plants upstream
% green cover

(a) Relative importance score (%)
5 10 150 20

(b)

% aquatic cover (500m)

Elevation

Elevation (mean)

Biogeoclimatic class
% forest cover (5km)

% forest cover

% forest cover (500m)

% agriculture cover (5km)

Major drainage basin class

Basin area

% settlement cover (5km)

% deciduous forest/coniferous forest

% cereal cultivation cover

% green cover

% legume cultivation cover
River width

FeS concentration

(Landscape: 500m, 5km as buffer distance)

F IGURE 2 Relative importance scores
of selected explanatory variables (of 76
variables) for local taxonomic richness (a-
diversity) of riverine macroinvertebrates in
Switzerland: (a) family richness and (b) EPT
species richness. See Appendix S1 for
variable description [Color figure can be
viewed at wileyonlinelibrary.com]
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F IGURE 3 Representative modelled relationships of explanatory variables for macroinvertebrate family richness: C, Central plain; J, Jura; N,
North flank of Alps; S, South flank of Alps; E, eastern Central Alps and W, western Central Alps. See Appendix S2 for all the variables
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regions, elevation and the relative proportion of forest land cover

(Figure 5). Most distinctly, negative synergetic effects were found

commonly where the relative proportion of forest land cover (5 km

buffer) was <20%–30%, together with the conditions of over

2,000 m of elevation (at the bottom foreground corner of each cube

in Figure 5). These interaction patterns were dependent on biogeo-

climatic region. Variability in richness along these gradients was high-

est in the north flank of the Alps, Jura and Central plains (Figure 5a

and Figure S2), moderate in the south flank of the Alps (Figure 5b)

and lowest in the eastern and western Central Alps (Figure 5c and

Figure S2). The variation caused by the interactions cannot be

explained by their individual effects (Figure 3).

4 | DISCUSSION

Theory and experiments strongly suggest that interactions of

multiple drivers, especially HOI, are a major source of uncertainty

as ecological surprises (sensu King, 1995) in predicting species

distributions and biodiversity (Ara�ujo & Guisan, 2006; Guisan

et al., 2006; Sala et al., 2000). However, HOI of environmental

factors shaping biodiversity patterns at biogeographically relevant

scales have been rarely systematically investigated because of too

many possible factor interactions (Côt�e et al., 2016; Gieswein

et al., 2017). Answering the first two study questions, the results

showed that (1) a machine learning algorithm with mutual

information theory can extract a few key HOI of

environmental factors from numerous possible three-way interac-

tions and (2) the three-way interactions of elevation, terrestrial

land cover and biogeoclimatic region were most important in

explaining riverine macroinvertebrate diversity patterns across

Switzerland.

Our results suggest that a vast majority of possible three-way

combinations are negligible (as shown by importance scores near

zero; Figure 4), while only a few may play a role as ecological

surprises in shaping observed biodiversity patterns. Thus, a key

aspect for understanding freshwater communities is to identify

which of all possible factor combinations are relevant; this selec-

tion can be guided by the approach used herein. Our results are

in agreement with Gieswein et al. (2017), who used a different

machine learning approach to conclude that non-additive effects

certainly exist, but additive effects may prevail in structuring

diversity patterns in streams at similar geographical scales. Neither

study, however, compared models with and without interaction

effects because of the nature of the applied techniques. The rela-

tive importance of interaction effects versus individual effects still

remains untested.

The interaction effects of elevation–forest–biogeoclimatic combi-

nations might be explained by the underlying ecological significance

of riparian forests on streams in terms of the meta-ecosystem con-

cept (Gounand, Harvey, Little, & Altermatt, 2018; Loreau et al.,

2003). Dense riparian forest coverage generally increases local

macroinvertebrate diversity (e.g. Rios & Bailey, 2006). Riparian for-

ests provide leaf litter as a nutritious resource and large woody deb-

ris that creates local habitat heterogeneity (Feld & Hering, 2007;

Hilderbrand, Lemly, Dolloff, & Harpster, 1997). Furthermore, roots in

soil influence biogeochemical conditions together with root-asso-

ciated microbes (Schade, Fisher, Grimm, & Seddon, 2001). Plant com-

munity composition, which shows turnover along an elevational

gradient, can also be important for these functions. Furthermore,
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plant community composition also dependents on the available

regional species pool, which, in turn, reflects biogeoclimatic condi-

tions. Another possible explanation for an effect of elevation is a

direct thermal influence on macroinvertebrates. As aquatic organisms

tend to be more sensitive to stressors near their thermal tolerance

limits (Heugens, Hendriks, Dekker, van Straalen, & Admiraal, 2001),

it is reasonable to assume that the negative effects of low forest

coverage become stronger above 2000 m elevation.

Biodiversity conservation requires the selective management of

pivotal factors to effectively allocate limited resources and time

TABLE 1 The 10 most important three-way interactions for local taxonomic richness of aquatic invertebrates in Switzerland. Combinations
in bold are visualized in Figure 5

Rank
Explanatory variables

Score

(a) Macroinvertebrate family richness: 1140 combinations among the 20 variables

1 Elevation Elevation (mean) Biogeoclimatic class 1.17

2 Elevation Biogeoclimatic class % forest cover (5 km) 0.84

3 Elevation Biogeoclimatic class Carbonate rock/silicate rock 0.82

4 Elevation Biogeoclimatic class % forest cover 0.81

5 Elevation (mean) Biogeoclimatic class % forest cover (5 km) 0.74

6 Elevation Biogeoclimatic class % aquatic cover (500 m) 0.70

7 Elevation Elevation (mean) % forest cover (5 km) 0.68

8 Elevation (mean) % agriculture cover (5 km) % forest cover (5 km) 0.65

9 Elevation % agriculture cover (5 km) % forest cover (5 km) 0.65

10 Elevation Biogeoclimatic class % agriculture cover (5 km) 0.60

(b) EPT species richness: 680 combinations among the 17 variables

1 % forest cover (500 m) % forest cover (5 km) Biogeoclimatic class 1.67

2 % forest cover (500 m) % forest cover (5 km) Elevation 1.27

3 % forest cover (500 m) % forest cover (5 km) % settlement cover (5 km) 1.15

4 % forest cover (500 m) Elevation Biogeoclimatic class 0.94

5 % forest cover (5 km) % forest cover Biogeoclimatic class 0.94

6 % forest cover (500 m) % forest cover Biogeoclimatic class 0.94

7 % forest cover (5 km) Elevation Biogeoclimatic class 0.93

8 % forest cover (500 m) % forest cover (5 km) Deciduous/coniferous forest 0.89

9 % forest cover (500 m) Elevation (mean) Biogeoclimatic class 0.84

10 % forest cover (500 m) % settlement cover (5 km) Biogeoclimatic class 0.80

500 m and 5 km as buffer distance from the sampling site to the upstream catchment.
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(Pimm et al., 2001). Answering the last study question, our results

suggest that the preservation of forest coverage is a priority to con-

serve riverine biodiversity. This is consistent with previous field-

based studies (Kaelin & Altermatt, 2016; Kautza & Sullivan, 2015;

Krell et al., 2015; Seymour, Deiner, et al., 2016) and theoretical and

experimental studies that predict the importance of cross-ecosystem

exchange processes (Loreau et al., 2003) and patterns across land-

scapes (Harvey et al., 2016). Considering cross-ecosystem subsidies,

such as nutrients, along land use types in rivers (Kautza & Sullivan,

2015; Krell et al., 2015), disruptions or alterations to these subsidy

exchanges are key mechanisms explaining how changes in the ter-

restrial matrix can spatially affect aquatic assemblages (Soininen

et al., 2015). Considering the interactive effects that we found, it is

important to develop a better understanding of how the contribu-

tions of forest on riverine biodiversity change along elevational gra-

dients and among biogeoclimatic regions.

Another implication for management is to consider the appropri-

ate spatial scale. For EPT species richness, the negative effect of low

forest coverage was amplified where forest coverage was low within

both 500 m- and 5 km-buffered distances (first rank for EPT in

Table 1 and Figure S2 in Appendix S2). Ignoring this interaction in

management practice may lead to an unexpectedly stronger reduc-

tion in diversity. To avoid this interaction, forest coverage within

either 500 m- or 5 km-buffered distance needs to be preserved at

>30% (Jackson et al., 2016). For instance, even if there is no forest

coverage within 5 km-buffered distance, the negative effect may be

compensated with >30% forest coverage within 500 m-buffered dis-

tance. Such cross-scale interactions are an emerging topic in ecology

(Peters, Bestelmeyer, & Turner, 2007; Soranno et al., 2014) but have

received little attention in multi-scale land use studies (Allan, 2004).

Our approach captured the multiple biological patterns within

the dataset much more accurately than previous modelling attempts.

The explanatory power was two- to threefold higher than that

reported in previous studies that analysed subsets of variables from

the same dataset (20%–30%; e.g. Altermatt et al., 2013; Seymour,

Deiner, et al., 2016). Therefore, the limited power of explaining bio-

diversity in riverine ecosystems may not necessary, not only due to

inherent limitations of the system (Heino et al., 2015) and missing

key processes such as species interactions, large-scale dispersal

dynamics and demography (e.g. Urban et al., 2016) but also due to

inherent limitations of the analytical methods applied. For example,

the use of multiprocess hierarchical or network-based statistical

assumptions in ecology also can offer new insights into ecological

analyses (Cressie, Calder, Clark, Ver Hoef, & Wikle, 2009; Grace

et al., 2012, 2016; Harvey & MacDougall, 2015).

A recent review by Jackson et al. (2016) concluded that multiple

stressors often interact with each other in freshwater experiments.

This study and Gieswein et al. (2017), conducted at a much larger

scale, also found some interactive effects on macroinvertebrate rich-

ness. However, Gieswein et al. (2017) found no interactive effects

of environmental factors on diversity patterns of fishes and macro-

phytes. Such inconsistency highlights the urgent need to accumulate

much more empirical evidence on interactive effects of multiple

drivers at biogeographically relevant scales, especially HOI, towards

concluding the importance of interactive effects across scales, organ-

isms and ecological levels.

ACKNOWLEDGEMENTS

We thank the Swiss Federal Office for the Environment for pro-

viding the BDM dataset, N. Martinez for supporting data access

and all people engaged in the BDM programme. We also thank

Mat Seymour and two anonymous referees for comments that

substantially improved the manuscript. The work was funded by

the Swiss National Science Foundation, grant no. PP00P3_150698

(to F.A.).

DATA ACCESSIBILITY

The macroinvertebrate data are available with permission by the

Swiss Biodiversity Monitoring BDM Coordination Office, while the

data sources of explanatory variables are listed in Appendix S1.

ORCID

Masahiro Ryo http://orcid.org/0000-0002-5271-3446

REFERENCES

Allan, J. D. (2004). Landscapes and Riverscapes: The influence of land

use on stream ecosystems. Annual Review of Ecology, Evolution, and

Systematics, 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.

35.120202.110122

Altermatt, F. (2013). Diversity in riverine metacommunities: A network

perspective. Aquatic Ecology, 47, 365–377. https://doi.org/10.1007/

s10452-013-9450-3

Altermatt, F., Seymour, M., & Martinez, N. (2013). River network proper-

ties shape a-diversity and community similarity patterns of aquatic

insect communities across major drainage basins. Journal of Biogeog-

raphy, 40, 2249–2260. https://doi.org/10.1111/jbi.12178

Anastassiou, D. (2007). Computational analysis of the synergy among

multiple interacting genes. Molecular Systems Biology, 3(83), 1–8.

Ara�ujo, M. B., & Guisan, A. (2006). Five (or so) challenges for species dis-

tribution modelling. Journal of Biogeography, 33, 1677–1688.

https://doi.org/10.1111/j.1365-2699.2006.01584.x

BDM Coordination Office. (2014). Swiss biodiversity monitoring BDM.

Bern, Switzerland: Description of methods and indicators.

Bergmann, J., Ryo, M., Prati, D., Hempel, S., & Rillig, M. C. (2017). Root traits

are more than analogues of leaf traits: The case for diaspore mass. New

Phytologist, 216, 1130–1139. https://doi.org/10.1111/nph.14748

Billick, I., & Case, T. J. (1994). Higher order interactions in ecological

communities: What are they and how can they be detected? Ecology,

75, 1529–1543. https://doi.org/10.2307/1939614

Bishl, B., Lang, M., Kotthoff, L., Richter, J., Jones, Z., Casalicchio, G., . . .

Fendt, F. (2016). Package “mlr.”
Bradter, U., Kunin, W. E., Altringham, J. D., Thom, T. J., & Benton, T. G.

(2013). Identifying appropriate spatial scales of predictors in species

distribution models with the random forest algorithm. Methods in

Ecology and Evolution, 4, 167–174. https://doi.org/10.1111/j.2041-

210x.2012.00253.x

Breiman, L. (1996). Out-of-bag estimation. Berkeley, CA: Statistics Dept,

University of California.

636 | RYO ET AL.

http://orcid.org/0000-0002-5271-3446
http://orcid.org/0000-0002-5271-3446
http://orcid.org/0000-0002-5271-3446
https://doi.org/10.1146/annurev.ecolsys.35.120202.110122
https://doi.org/10.1146/annurev.ecolsys.35.120202.110122
https://doi.org/10.1007/s10452-013-9450-3
https://doi.org/10.1007/s10452-013-9450-3
https://doi.org/10.1111/jbi.12178
https://doi.org/10.1111/j.1365-2699.2006.01584.x
https://doi.org/10.1111/nph.14748
https://doi.org/10.2307/1939614
https://doi.org/10.1111/j.2041-210x.2012.00253.x
https://doi.org/10.1111/j.2041-210x.2012.00253.x


Breiman, L. (2001). Random forests. Machine learning, 45, 5–32. https://

doi.org/10.1023/A:1010933404324

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classifica-

tion and regression trees. London: Chapman and Hall/CRC.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel

inference: A practical information-theoretic approach (2nd ed.). New

York: Springer.

Côt�e, I. M., Darling, E. S., & Brown, C. J. (2016). Interactions among

ecosystem stressors and their importance in conservation. Proceed-

ings of the Royal Society B: Biological Sciences, 283, 20152592.

Cressie, N., Calder, C. A., Clark, J. S., Ver Hoef, J. M., & Wikle, C. K.

(2009). Accounting for uncertainty in ecological analysis: The

strengths and limitations of hierarchical statistical modeling. Ecological

Applications, 19, 553–570. https://doi.org/10.1890/07-0744.1

Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson,

J., & Lawler, J. J. (2007). Random forests for classification in ecology.

Ecology, 88, 2783–2792. https://doi.org/10.1890/07-0539.1

Darling, E. S., & Côt�e, I. M. (2008). Quantifying the evidence for ecologi-

cal synergies. Ecology Letters, 11, 1278–1286. https://doi.org/10.

1111/j.1461-0248.2008.01243.x

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Know-
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