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Abstract. With increasing biotic introductions, there is a great need for predictive tools to
anticipate which new trophic interactions will develop and which will not. Phylogenetic
constraint of interactions in both native and novel food webs can make some novel
interactions predictable. However, many food webs are sparsely sampled, or may include
inaccurate interactions. In such cases, it is unclear whether modeling methods are still useful to
anticipate novel interactions. We ran bootstrap simulations of host-use models on a
Lepidoptera–plant data set to remove native trophic records or add erroneous records in order
to observe the effect of missing or erroneous data on the prediction of interactions with novel
plants. We found that the model was robust to a large amount of missing interaction records,
but lost predictive power with the addition of relatively few erroneous interaction records. The
loss of predictive power with missing records was due to inaccuracy in estimating phylogenetic
distance between native and novel hosts. Removal of interaction records proportionally to
their encounter frequency in the field had little effect on the loss of predictive power. Host-use
models may have immediate value for predicting novel interactions from large, but sparsely
sampled databases of trophic interactions.

Key words: herbivory; host-use model; introduced species; Lepidoptera; novel interactions; predictions;
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INTRODUCTION

Commerce and travel have weakened the longstand-

ing biotic barriers between continents and biogeographic

regions (Mack et al. 2000). The consequences of

introduced organisms on native biota are difficult to

predict, but can range from innocuous to very delete-

rious (NAS 2002). One of the most important aspects of

how a novel organism affects its colonized environment

is the degree to which it develops trophic interactions

with existing organisms in that environment (Maron and

Vilá 2001, Levine et al. 2004, Pearse et al. 2013). As

such, there is considerable interest in developing

predictive methods to anticipate the trophic interactions

that might develop between introduced and native

species before the introduction actually happens (NAS

2002, Briese 2003, Gilbert et al. 2012, Pearse and

Altermatt 2013b, Pearse et al. 2013).

There have been several efforts to conceptually define

the factors that cause some novel trophic interactions to

form while others do not (Verhoeven et al. 2009, Harvey

et al. 2010, Sih et al. 2010, Pearse et al. 2013). In each of

these cases, the likelihood of a novel interaction can be

described by the host breadth of the exploiter, the

exploitability (or, conversely, defense) of the exploited

organism, and the match between those organisms.

Estimates of similarity between a novel organism and

native organisms at the same trophic level may be useful

in predicting novel interactions, because organisms that

are functionally or phylogenetically similar tend to

consume or be consumed by a similar set of organisms

(Cattin et al. 2004, Gómez et al. 2010). A recent

approach to predicting novel herbivore–plant interac-

tions with introduced plants used only two predictors,

firstly the phylogenetic distance between an introduced

plant and a native host plant and secondly herbivore

host breadth on native plants, and accurately predicted

most Lepidoptera interactions with nonnative plants

introduced into Central Europe (Pearse and Altermatt

2013b). This method is based on a host-use model using

the native food web that then extrapolates that model to

nonnative plants (an out-of-sample prediction), whose

phylogenetic relationships to native flora are known

(Ebert 1991�2005, Pearse and Altermatt 2013b). While

this method was developed for novel herbivore–plant

interactions, it could be applied to a wide range of novel

trophic interactions, including parasite–host interactions

(e.g., Ives and Godfray 2006) pollinator–plant interac-

tions (e.g., Rezende et al. 2007), and predator–prey

interactions (e.g., Naisbit et al. 2012).
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In order to be immediately useful at a large scale, such

predictive methods must be able to anticipate novel

trophic interactions using information on native food

webs that is currently available. Initial tests of this

method were conducted on a highly sampled food web,

where the vast majority of native trophic interactions

were known (Pearse and Altermatt 2013b). However,

completeness is simply not the case for most food webs,

which lack records of interactions due to incomplete

sampling (Goldwasser and Roughgarden 1997). This is

not only the case for hyperdiverse food webs in tropical

areas, but also in many temperate areas. For example,

researchers have attempted to define the host breadth of

herbivores and pathogens of economically valuable

plants based on trophic interactions present in large

U.S. Department of Agriculture plant databases (Gil-

bert et al. 2012). Given the scope and heterogeneous

sampling of trophic interactions in these databases, it is

very likely that only a fraction of true hosts of

herbivores and pathogens were recorded. Nevertheless,

prediction of novel trophic interactions from these types

of databases is a highly valuable application, given their

continent-wide scope. As such, it would be very useful to

know to what degree poorly sampled or inaccurate

native food webs can be used to predict novel trophic

interactions.

Using the Ebert Lepidoptera–plant food web (Ebert

1991�2005, Pearse and Altermatt 2013b) from Central

Europe, we tested how missing and erroneous data

affect predictions of novel trophic interactions. We

deleted interaction records or added erroneous interac-

tion records in increasing numbers in order to estimate

the effects of missing and erroneous native trophic data

on the prediction of novel trophic interactions. Using

this technique, we asked the following related questions:

First, how robust are novel host predictions to missing

interaction records? Second, are novel host predictions

more robust to missing or erroneous interaction records?

Third, is the loss of predictive power with decreased

sampling due mainly to poor parameterization of the

native trophic model or due to poor extrapolation to

novel hosts? Finally, do records of interactions that are

rarely encountered have less of a bearing on the
prediction of novel interactions than records of common

interactions?
One reason why sampling of native interactions may

be particularly important in predicting novel interac-
tions is that native interactions are used twice in making

those predictions. They are first used in the model
parameterization step to define similarity among native
hosts, and then used in the extrapolation step to define

similarity between native and novel hosts. Up to now, it
has been unclear which of these steps is more susceptible

to missing interaction records. The approach used here
allowed us not only to identify the robustness of

predictions on novel trophic interactions, but also to
disentangle the relative importance of the interaction

information during the different steps of the model
parametrization process recommended for such predic-

tions.

METHODS

Food web

We tested how missing and erroneous data affect out-
of-sample predictions from trophic models using the

Ebert Lepidoptera–plant food web (Ebert 1991–2005).
The food web describes the interactions between 898

larval Lepidoptera species (caterpillars of moths and
butterflies) and their 1537 host plants in the German

state Baden-Wuerttemberg in Central Europe (35 751
km2). The vast majority of interaction records between

Lepidoptera and host plants were compiled from a
single, extensive monograph (Ebert 1991–2005), and a

few additional records were added from other mono-
graphs from similar regions as well as our own personal

observations (Koch and Heinicke 1991, Altermatt et al.
2006). The structure and sampling of this food web have

been described elsewhere (Altermatt 2010, Altermatt
and Pearse 2011, Pearse and Altermatt 2013a, b). We

added information on all 586 native and nonnative
plants that do not interact with any of the Lepidoptera
from the complete plant list from Baden-Wuerttemberg

(Bundesamt für Naturschutz 2010), making up a total of
2123 plant species considered, 474 of which have been

introduced to Central Europe (Table 1). The host
records analyzed here are very similar to those presented

in our past work (Altermatt 2010, Altermatt and Pearse
2011, Pearse and Altermatt 2013a, b).

In our simulations, we treat the Ebert Lepidoptera–
plant food web as being completely sampled and

without erroneous records. While it is likely that there
are some missing or erroneous interaction records within

the food web, we believe that these are relatively few for
several reasons. First, the host records are based on a

very large number (;2.3 million) of observations of
Lepidoptera–host plant interactions over the course of

.50 years (Ebert 1991–2005), so the sampling intensity
is high. Second, sampling was conducted with the goal

of recording complete host records for each Lepidoptera

TABLE 1. Descriptive statistics of the Ebert (1991–2005)
Lepidoptera–plant food web.

Statistic Value

Total number of native plants 2123
Number of Lepidoptera 898
Native interaction records 4727
Percentage fill of native food web 0.248%
Number of native non-host plants 586
Number of native host plants 1537
Total number of nonnative plants 474
Nonnative interaction records 491
Percentage fill of nonnative food web 0.115%

Notes: We list the number of Lepidoptera species and native/
nonnative plant species used or not used by Lepidoptera as
hosts. Percentage fill is the number of interactions that were
observed divided by possible interactions (i.e., number of plants
3 number of Lepidoptera).
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species, so additional effort was placed on recording rare

hosts. Finally, the host records are based entirely on

field observations in a natural setting and recorded by

professional entomologists. Because of this, there are

likely few erroneous observations in the data set and no

records of interactions that are possible in a laboratory

setting, but not in the wild.

In one set of simulations, we estimated encounter

frequency from the Ebert Lepidoptera–plant food web.

In the Ebert food web, values recorded an ordinal (1–5)

estimate of the frequency of each Lepidoptera–plant

interaction (Ebert 1991–2005). These scores were

recorded as a single observation (1); a few isolated

observations (2); several observations, and the plant

may be locally or temporally of significance for the

Lepidoptera species (3); many observations, and the

plant may be locally or temporally of high significance

for the Lepidoptera species (4); and very many

observations, and the plant has a key role as a food

source for the specific Lepidoptera species (5; Altermatt

and Pearse 2011). In order to treat these ordinal scores

numerically, we defined encounter frequency, where

each ascending score was twice as likely to be observed

than the previous score, resulting in values for scores of

1 (1), 2 (2), 3 (4), 4 (8), and 5 (16), where the encounter

frequency is given in parentheses. While a twofold

difference between classes is an arbitrary value, it codes

interactions of higher scores as being far more likely

encountered than interactions of lower scores. Our only

use of encounter frequency values was to rank the

likelihood of missing a given interaction. Trophic

models were only used to predict the presence of an

interaction, not its encounter frequency.

Plant phylogeny

Phylogenetic proximity to a native host was a key

predictor in our trophic niche models. We used a recent

supertree of Northern European vascular plants (Daph-

ne) as an estimate of phylogenetic relationships between

the 2597 native and nonnative plants that occur in

Baden-Wuerttemberg (Durka and Michalski 2012). This

regional phylogeny was based on the backbone of the

APG III plant phylogeny (Bremer et al. 2009), with

numerous clade-specific phylogenies grafted to appro-

priate nodes. This phylogeny contained 2484 (96%) of

the plant species represented in the Ebert food web. The

113 species not included in the phylogeny were missing

for one of two reasons. First, species boundaries were

dealt with differently in 63 cases, largely pertaining to

apomictic species complexes with poorly defined species

concepts. In these cases, we grafted (i.e., added as a new

branch) each of the 63 non-included species as sister to a

species from the same species complex. In 50 cases,

plants were not included in the phylogeny because they

were ornamentals, and rarely encountered in naturalized

settings. In these cases, we grafted the missing plant onto

the Daphne phylogeny as polytomies at the genus or

familial level. We then trimmed the modified Daphne

phylogeny to the plants represented within Ebert food

web.

Trophic niche model

We used a trophic niche model to simulate the

associations of larval Lepidoptera with native host

plants and to extrapolate from this model in order to

predict their interactions with novel host plants (Pearse

and Altermatt 2013b). This type of predictive technique

is accomplished in three steps: native trophic model

parameterization, extrapolation of the model to novel

interactions, and validation of the model with informa-

tion of novel interactions (Pearse et al. 2013). We

provide the R functions (R Core Team 2014) used to

parameterize a native trophic model and to extrapolate

from that model to predict novel interactions, as used

here (Pearse and Altermatt 2013b).

Model parameterization of native interactions.—We

used a k-fold procedure to split data on native

Lepidoptera–plant interactions into five (k¼ 5) random

partitions, where each partition contained all informa-

tion for one-fifth of the native plant records in the

interaction matrix. In a previous test of different

numbers of data partitioning, the number of partitions

had little effect on the model parameters (Pearse and

Altermatt 2013b). For each of the five partitions, we

treated four partitions as calibration data and the fifth

as evaluation data (Peterson et al. 2011:114, 274). We

defined two predictors of herbivore host use, the number

of native hosts of an herbivore (H ) and phylogenetic

distance (S ), the minimum branch length separating a

plant in the evaluation data partition from any host

plant in the calibration data partition. We parameterized

a generalized linear model (GLM) with parameters (m),

where the binomial response variable of an interaction

(I ) between an herbivore (h) and plant (p) with number

of hosts (s) was defined as

Ihp ¼ mh 3 H þ ms 3 Sþ mhs 3 S 3 H:

Model extrapolation to novel interactions.—We aver-

aged the parameters from the five data partitions used

for the parametrization of native interactions. These

averaged model parameters were then used in conjunc-

tion with values of number of native hosts of an

herbivore, and phylogenetic distance between a nonna-

tive plant and native hosts to project host use onto

interactions with nonnative plants.

Validation of predictions of novel interactions.—We

validated the out-of-sample prediction of novel host use

(native herbivore, introduced plant) from our native

trophic niche model (native herbivore, native plant) by

calculating the area under the curve (AUC) of the

receiver-operating characteristic (ROC) curve. This

approach plots the cumulative proportion of true

positive predictions against the cumulative proportion

of false positive predictions (Krzanowski and Hand

2009). An uninformative model will result in an ROC
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curve with an AUC of 0.5, while a perfectly predictive

model will result in an ROC curve with an AUC of 1.

Bootstrapping approaches

Starting with the true set of native Lepidoptera–plant

interactions (n ¼ 4727) and absences of interactions

between Lepidoptera and plants (n ¼ 1 904 331) in the

Ebert data set, we either removed true interactions or

added erroneous interactions in the place of true

absences. Records were removed either randomly or

inversely proportional to their encounter frequency. In

the first simulations, we removed interaction records

randomly, stepwise increasing the number of records

removed by 20 (0.4% of total interaction records) until

there were 27 interaction records left in the native food

web (i.e., 235 steps in total). Each sampling was

conducted five times with replacement. In scenarios in

which a lepidopteran did not have any recorded hosts,

its interaction probability with all plants was assigned

the global mean interaction probability. We then added

false positive interaction records to the native data set in

increments of 10 000 (0.5% of total absences) until the

data set was saturated with false positive interactions.

Due to the length of time for each simulation with high

numbers of false positive interactions, we conducted

each bootstrap simulation only once. In the false-

positive procedure, we added tens of thousands of

incorrect records to our native food web, but this rate of

error is unlikely to occur in real food webs. Because of

this, we reran our simulations with fewer records

removed or added (between 0 and 2000 in increments

of 20). In this case, each bootstrap sample was

conducted five times with replacement. In order to

assess the additivity of missing and erroneous data on

predictions of novel interactions, we conducted 20

bootstrap simulations where 2000 records were added,

removed, or both added and removed from the native

food web. Because our trophic model uses the native

food web in both model parameterization and model

extrapolation, we determined which of these two stages

was more sensitive to missing interaction records. To do

this, we compared three types of interaction record

removal: (1) a native food web with missing records in

either model parameterization, but a full native food

web for model extrapolation, (2) a full native food web

for model parameterization, but one with missing

records for model extrapolation, or (3) a food web with

missing records for both parameterization and extrap-

olation. Records were removed in increments of 20.

Each bootstrap sample was repeated five times for each

of the three types of removals. For visualization, splines

were fitted through bootstrap values using localized

polynomial fitting with R function loess using a

smoothing parameter (a) of 0.25. Confidence intervals

around the splines were visualized as standard error in

loess predictions. All simulations and analyses were

conducted in R version 3.1 using package ROCR (Sing

et al. 2005, R Core Team 2014).

RESULTS

Robustness to missing and erroneous data

The trophic model with complete records of native

Lepidoptera–plant interactions accurately predicted

novel host use with an AUC of 0.929, which corresponds

to an 83% prediction of novel host use (true positives) at

a 10% false positive rate. Random removal of native

Lepidoptera–plant interaction records from that data set

resulted in a modest decline in predictive ability (AUC;

Fig. 1A). The predictive ability of a trophic model using

a data set in which two-thirds of all interaction records

were removed retained an AUC of 0.843 (Fig. 1A). Once

roughly two-thirds of all records from the data set were

removed, predictive ability declined precipitously (Fig.

1A). In contrast, the replacement of interaction absences

with false-positive interactions resulted in an immediate

sharp decline in predictive ability (Fig. 1B). In this case,

the predictive ability of a trophic model using a data set

in which 10% of records of absence of interactions were

erroneously scored as interactions dropped to an AUC

of 0.639 (Fig. 1B).

We compared the effect of missing vs. erroneous

trophic interaction records on the predictive ability of

the trophic niche model. With realistic numbers of

missing or erroneous interaction observations (i.e., 0–

2000), we found that erroneous data had a more

negative impact than missing data on the predictive

ability of the trophic niche model if less than 1500

records (31.7% of all records) were removed or

erroneously added (Fig. 2). Above this number,

erroneous records had less of an impact than missing

records on the predictive ability of the trophic niche

model. The effect of missing and erroneous data was

slightly synergistic in reducing the predictive ability of

the trophic niche model when 2000 records were added,

removed, or both added and removed from the native

food web (Fig. 3). Erroneous data added to an under-

sampled food web reduced the out-of-sample predictive-

ness (AUC) of the host-use model to a greater degree

than erroneous data added to a completely sampled

food web.

Random missing records or proportional to encounter rate

It is likely that rare or cryptic interactions will more

often be overlooked than common or apparent interac-

tions. When we removed interactions inversely propor-

tional to their encounter rate, we found that the

predictive ability of the trophic niche model was

similarly robust to missing data as when that data was

removed randomly (Fig. 1A).

Effect of missing data on model parameters

vs. out-of-sample prediction

The native food web was used in two steps of

predicting novel trophic interactions: in the estimation

of model parameters, and in extrapolating to novel

hosts. Removal of native interaction records from only
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the model parameterization phase of the predictive

model resulted in a slower decline in predictive ability

with more missing records than removal of data from

both the model parameterization and extrapolation

steps (Fig. 4). In contrast, removal of data from the

data extrapolation step of the model resulted in a decline

in predictive ability that was very similar to removal of

data from both steps (Fig. 4), suggesting that model

parameterization is more robust to missing interaction

records than model extrapolation.

DISCUSSION

We found that a native trophic niche model of

Lepidoptera–plant interactions was transferable to novel

interactions between introduced plants and the same set

of lepidopteran herbivores even when the native food

web contained only one-third of all real Lepidoptera–

plant interactions (Fig. 1). This suggests that this

method of predicting novel trophic interactions can be

used with food webs that have been relatively poorly

described. Prediction of novel trophic interactions was

far more robust to poor sampling than the estimation of

various food-web properties, such as food chain length

and connectance, which were highly sensitive to

unsampled trophic interactions (Goldwasser and

Roughgarden 1997, Martinez et al. 1999). Missing

information about trophic interactions affected predic-

tions from the trophic model to a lesser degree than

erroneous (false positive) records of interactions. This

suggests that in the compilation of food webs, it may be

advisable to exclude records of dubious quality rather

than include them.

Analogous recent work has explored how sampling

affects the analysis of environmental niche models

(ENMs; Peterson et al. 2011), and it is worthwhile to

compare that work with our results from food-web

models. In general, ENMs appear robust to poorly

sampled occurrence records of organisms (Stockwell and

FIG. 1. Effects of missing and erroneous records on the predictiveness of a trophic model. (A) Out-of-sample (novel host)
predictions (area under the curve; AUC) of trophic models onto nonnative plant–Lepidoptera interactions with increasing numbers
of records removed from the native food web; numbers are shown for 0%, 20%, 40%, 60%, 80%, and 100% of records removed.
Records were removed from the native food web either randomly (solid line) or inversely proportional to a categorical estimate of
their encounter rate (dashed line). (B) AUC of trophic models with increasing numbers of false records of interactions added to the
native food web; numbers are shown for 0%, 20%, 40%, 60%, 80%, and 100% of records removed. Open circles represent a single
simulation. Lines are local-fitted polynomial splines.
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Peterson 2002, Wisz et al. 2008), much as our model

suggests robustness to undersampling of interaction

records. For example, most algorithms used in ENMs

achieved 90% accuracy of within-sample predictions

with only 10 occurrence records of Mexican birds

(Stockwell and Peterson 2002). In this case, relatively

few records were necessary to delimit the set of

environmental parameters that define a bird’s environ-

mental niche. In our case, interactions with only a subset

of native hosts were adequate to define the phylogenetic

groupings of hosts that were consumed by an herbivore.

One key difference between ENMs and host-use models

is that in the latter case, information about native hosts

is used twice (in model parameterization and extrapo-

lation), while in ENMs, native occurrence records are

used only in model parameterization. We found that the

model parameterization phase of host-use models was

less sensitive to missing native host records than the

extrapolation phase (Fig. 4). In both ENMs and host-

use models, there are likely biases in which records go

unsampled. In the case of ENMs, records are likely

skewed to reflect where biologists tend to collect

organisms (Kadmon et al. 2004), and in the case of

host-use models, interactions that are either common or

apparent are more likely to be sampled (Southwood and

Henderson 1966). However, we found that dispropor-

tionately removing interactions with lower encounter

frequencies had little effect on the predictive ability of

our host-use model (Fig. 1A), indicating that this bias

may not affect the predictiveness/sensitivity of novel

host-use models.

Host-use models, as envisioned here, will be most

useful for predicting novel interactions at a regional

scale, where large food webs can be compiled. Food

webs at this scale have been termed metawebs (Dunne

2006), because they consider interactions over broad

spatial and temporal scales. This contrasts food webs

often considered in analyses of local communities, where

interactions are likely occurring at the same time and

within a small area (Elias et al. 2013). At smaller scales,

local processes such as competitive exclusion, differen-

tial predation, and apparent competition may affect the

host affiliations of herbivores in addition to phyloge-

netic constraints of host use. Host-use models may,

however, be useful in defining which interactions are

possible within a local food web, though other factors

may also inhibit an interaction from being realized.

From a practical standpoint, regional metawebs are

ideal for the prediction of novel interactions, because the

regional scale (i.e., province, state, nation) is the scale at

which introduced species are typically managed or

quarantined (NAS 2002), so this is the scale at which

host-use predictions might be most useful.

Another key topic with host-use models is the

taxonomic and ecological scope at which they are useful.

Currently, we have shown that host-use models based on

phylogenetic proximity and number of hosts are

accurate in out-of-sample predictions of hosts of

herbivorous Lepidoptera. The high predictive power of

phylogenetic proximity of hosts is perhaps unsurprising

when considering host affiliations of fairly specialized

FIG. 2. The relative cost of missing vs. erroneous records. A
comparison of the effect of missing vs. erroneous records on the
predictiveness (AUC) of a trophic model onto nonnative
Lepidoptera–plant interactions; AUC of model with erroneous
records is subtracted from AUC of model with missing records.
Values of DAUC above 0 indicate that erroneous records have a
greater cost to model predictiveness than missing records. Open
circles represent the difference in means of five simulations with
missing data and five simulations with erroneous data. The line
is a local-fitted polynomial spline, and shading represents the
standard error.

FIG. 3. Additivity of novel host predictions with missing
and erroneous records. The effect of 2000 missing, 2000
erroneous, and both (2000 missing þ 2000 erroneous) records
on the prediction (AUC) of novel Lepidoptera–plant interac-
tions. The predicted additive effect of both missing and
erroneous data was calculated. The dashed line indicates the
predictiveness (AUC) of the model with the full data set. Bars
are means from 20 bootstrap simulations 6 standard deviation.
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herbivores such as many Lepidoptera, as it has long

been known that these herbivores consume a phyloge-

netically defined set of hosts (Ehrlich and Raven 1964,

Connor et al. 1980, Futuyma 1983, Ødegaard et al. 2005,

Weiblen et al. 2006). Many other interactions, such as

host–parasite interactions (Ives and Godfray 2006),

fungal pathogen interactions with plants (Gilbert et al.

2012), and predator–prey interactions (Naisbit et al.

2012) are constrained to varying degrees by phylogenetic

proximity of hosts. The phylogenetic signal in these

interactions may translate to higher trophic levels in

some cases (Leppänen et al. 2013), but not others (Elias

et al. 2013). For interactions defined along other axes,

host information beyond phylogenetic proximity will

likely be necessary to make accurate predictions. For

example, body size relationships predicted trophic

interactions in a food web of Mediterranean fish (Gravel

et al. 2013). Even for plant–herbivore interactions, not

only phylogenetic proximity, but also leaf trait similarity

explained variation in herbivore damage to nonnative

oak trees (Pearse and Hipp 2009). In the same system,

the nonnative hosts of a polyphagous herbivore were

defined by leaf defensive traits irrespective of their

similarity to a local native (Pearse 2011).

Currently, our host-use model uses only basic

modeling approaches (GLMs) and very little informa-

tion about the organisms involved. This simplicity has

some advantages. For example, while phylogenetic

relationships can be estimated from the literature for

most plants, their relevant defenses against herbivores

cannot. It is likely, however, that including more

information about interacting organisms and using

more sophisticated modeling techniques that can fit

more complex interactions will improve the predictive

ability of host-use models even further. Drawing

another analogy to environmental niche models, the

inclusion of multiple environmental parameters and the

use of sophisticated algorithms such as Maxent and

GARP consistently improve ENMs over simpler models

(Wisz et al. 2008, Elith and Leathwick 2009).

How complete are native food webs?—We found that

host-use models retained high predictive ability of novel

interactions until roughly two-thirds of all trophic

interactions were removed from the native food web.

If the same pattern is true for other food webs, it would

suggest that a one-third sampling completeness is

necessary for host-use models to be useful. This begs

the question: how well-sampled are trophic interactions

in various food webs? Sampling likely varies widely

among food webs, though this can be difficult to

determine quantitatively because of the heterogeneous

way in which most large food webs are necessarily

compiled. For example, in one plant–pollinator food

web, intense sampling using traditional direct observa-

tion of pollinator visits to flowers missed 26% of all

pollinator visitation links, which were later confirmed

using pollen fingerprinting methods (Olesen et al. 2011).

Using insect–plant food webs as an example, the food

webs with the highest sampling intensity tend to be

confined to a particular region or location. For example,

the host plants of most British butterflies and moths are

well-described (e.g., Dennis et al. 2004), and the hosts of

tropical herbivorous insects are well-studied for a few

geographically limited locations (e.g., Weiblen et al.

FIG. 4. Records missing (i.e., removed) at different steps of the predictive model. Out-of-sample predictions (AUC) of trophic
models onto nonnative Lepidoptera interactions with increasing numbers of records removed from the native food web; numbers
are shown for 0%, 20%, 40%, 60%, 80%, and 100% of records removed. Records were removed either from all parts of the predictive
model (black), removed in the parameterization phase of the host-use model (blue), or removed from the prediction phase (orange).
Data points represent a single simulation. Lines are local-fitted polynomial splines.
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2006), but are largely unknown for large tropical areas.

In contrast, large-scale monographs and databases of

insect–plant interactions (the USDA APHIS-PPQ [Plant

Protection and Quarantine] Global Pest and Disease

Database, Tietz 1972, Robinson et al. 2010) probably

represent a very small fraction of the total host range of

those insects. These are the resources, however, that will

be most applicable to predicting important novel

arthropod–plant interactions, including herbivory to

nonnative plants (Gilbert et al. 2012), and nontarget

effects of biological control agents (Louda et al. 2003,

Desurmont and Pearse 2014). Using the latter as an

example, intensive, small-scale laboratory studies are

currently being conducted to anticipate nontarget effects

of biological control agents, but these tests are costly

and occasionally fail to anticipate novel hosts, with

disastrous consequences (Louda et al. 2003). Food-web

modeling approaches could complement feeding studies

to provide a more complete assessment of potential

nontarget hosts. Fortunately, while increased sampling

effort of native food webs will likely make those food

webs slightly more useful for inferring potential novel

interactions with introduced species, we show that poor

sampling does not necessarily impede those predictions.
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Württembergs. Ulmer, Stuttgart, Germany.

Ehrlich, P. R., and P. H. Raven. 1964. Butterflies and plants: a
study in coevolution. Evolution 18:586–608.

Elias, M., C. Fontaine, and F. J. F. van Veen. 2013.
Evolutionary history and ecological processes shape a local
multilevel antagonistic network. Current Biology 23:1355–
1359.

Elith, J., and J. R. Leathwick. 2009. Species distribution
models: ecological explanation and prediction across space
and time. Annual Review of Ecology, Evolution, and
Systematics 40:677–697.

Futuyma, D. J. 1983. Evolutionary interactions among
herbivorous insects and plants. Pages 207–231 in D. J.
Futuyma and S. M., editors. Coevolution. Sinauer, Sunder-
land, Massachusetts, USA.

Gilbert, G. S., R. Magarey, K. Suiter, and C. O. Webb. 2012.
Evolutionary tools for phytosanitary risk analysis: phyloge-
netic signal as a predictor of host range of plant pests and
pathogens. Evolutionary Applications 5:869–878.

Goldwasser, L., and J. Roughgarden. 1997. Sampling effects
and the estimation of food-web properties. Ecology 78:41–54.
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Ecological niches and geographic distributions. Princeton
Press, Princeton, New Jersey, USA.

R Core Team. 2014. R: a language and environment for
statistical computing v. 3.1.0. R Foundation for Statistical
Computing, Vienna, Austria. www.r-project.org

Rezende, E. L., J. E. Lavabre, P. R. Guimarães, P. Jordano,
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