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Biological dispersal shapes species’ distribution and affects their co-
existence. The spread of organisms governs the dynamics of invasive
species, the spread of pathogens, and the shifts in species ranges due
to climate or environmental change. Despite its relevance for funda-
mental ecological processes, however, replicated experimentation on
biological dispersal is lacking, and current assessments point at in-
herent limitations to predictability, even in the simplest ecological
settings. In contrast, we show, by replicated experimentation on
the spread of the ciliate Tetrahymena sp. in linear landscapes, that
information on local unconstrained movement and reproduction
allows us to predict reliably the existence and speed of traveling
wavesof invasionat themacroscopic scale. Furthermore, a theoretical
approach introducing demographic stochasticity in the Fisher–Kolmo-
gorov framework of reaction–diffusion processes captures the ob-
served fluctuations in range expansions. Therefore, predictability of
the key features of biological dispersal overcomes the inherent bi-
ological stochasticity. Our results establish a causal link from the
short-term individual level to the long-term, broad-scale population
patterns and may be generalized, possibly providing a general pre-
dictive framework for biological invasions in natural environments.
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What is the source of variance in the spread rates of bi-
ological invasions? The search for processes that affect

biological dispersal and sources of variability observed in eco-
logical range expansions is fundamental to the study of invasive
species dynamics (1–10), shifts in species ranges due to climate
or environmental change (11–13), and, in general, the spatial
distribution of species (3, 14–16). Dispersal is the key agent that
brings favorable genotypes or highly competitive species into new
ranges much faster than any other ecological or evolutionary
process (1, 17). Understanding the potential and realized dis-
persal is thus key to ecology in general (18). When organisms’
spread occurs on the timescale of multiple generations, it is the
byproduct of processes that take place at finer spatial and tem-
poral scales that are the local movement and reproduction of
individuals (5, 10). The main difficulty in causally understanding
dispersal is thus to upscale processes that happen at the short-
term individual level to long-term and broad-scale population
patterns (5, 18–20). Furthermore, the large fluctuations observed
in range expansions have been claimed to reflect an intrinsic lack
of predictability of the phenomenon (21). Whether the variability
observed in nature or in experimental ensembles might be ac-
counted for by systematic differences between landscapes or by
demographic stochasticity affecting basic vital rates of the
organisms involved is an open research question (10, 18, 21, 22).
Modeling of biological dispersal established the theoretical

framework of reaction–diffusion processes (1–3, 23–25), which
now finds common application in dispersal ecology (5, 14, 22, 26–
30) and in other fields (17, 23, 25, 31–36). Reaction–diffusion
models have also been applied to model human colonization
processes (31), such as the Neolithic transition in Europe (25, 37,
38). The classical prediction of reaction–diffusion models (1, 2,
24, 25) is the propagation of an invading wavefront traveling

undeformed at a constant speed (Fig. 1E). Such models have been
widely adopted by ecologists to describe the spread of organisms in
a variety of comparative studies (5, 10, 26) and to control the dy-
namics of invasive species (3, 4, 6). The extensive use of these
models and the good fit to observational data favored their com-
mon endorsement as a paradigm for biological dispersal (6).
However, current assessments (21) point at inherent limitations to
the predictability of the phenomenon, due to its intrinsic stochas-
ticity. Therefore, single realizations of a dispersal event (as those
addressed in comparative studies) might deviate significantly from
the mean of the process, making replicated experimentation nec-
essary to allow hypothesis testing, identification of causal relation-
ships, and to potentially falsify the models’ assumptions (39).
Here, we provide replicated and controlled experimental sup-

port to the theory of reaction–diffusion processes for modeling
biological dispersal (23–25) in a generalized context that repro-
duces the observed fluctuations. Firstly, we experimentally sub-
stantiate the Fisher–Kolmogorov prediction (1, 2) on the existence
and the mean speed of traveling wavefronts by measuring the
individual components of the process. Secondly, we manipulate
the inclusion of demographic stochasticity in the model to re-
produce the observed variability in range expansions. We move
from the Fisher–Kolmogorov equation (Materials and Methods) to
describe the spread of organisms in a linear landscape (1, 2, 24,
25). The equation couples a logistic term describing the re-
production of individuals with growth rate r ½T−1� and carrying
capacity K ½L−1� and a diffusion term accounting for local move-
ment, epitomized by the diffusion coefficient D ½L2T−1�. These
species’ traits define the characteristic scales of the dispersal
process. In this framework, a population initially located at one
end of a linear landscape is predicted to form a wavefront of
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colonization invading empty space at a constant speed v= 2
ffiffiffiffiffiffi
rD

p
(1, 2, 24, 25), which we measured in our dispersal experiment (Fig.
1D and SI Text).

Results
In the experiments, we used the freshwater ciliate Tetrahymena
sp. (Materials and Methods) because of its short generation time
(16) and its history as a model system in ecology (16, 40, 41). The

experimental setup consisted of linear landscapes, filled with
a nutrient medium, kept in constant environmental conditions
and of suitable size to meet the assumptions about the relevant
dispersal timescales (Materials and Methods). Replicated dis-
persal events were conducted by introducing an ensemble of
individuals at one end of the landscape and measuring density
profiles throughout the system at different times, through image
analysis (Materials and Methods). Density profiles are shown in
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Fig. 1. Schematic representation of the experiment. (A) Linear landscape. (B) Individuals of the ciliate Tetrahymena sp. move and reproduce within the
landscape. (C) Examples of reconstructed trajectories of individuals (Movie S1). (D) Individuals are introduced at one end of a linear landscape and are
observed to reproduce and disperse within the landscape (not to scale). (E) Illustrative representation of density profiles along the landscape at subsequent
times. A wavefront is argued to propagate undeformed at a constant speed v according to the Fisher–Kolmogorov equation.
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Fig. 2. Density profiles in the dispersal experiment and in the stochastic model. (A–F) Density profiles of six replicated experimentally measured dispersal events, at
different times. Legends link each color to the corresponding measuring time. Black dots are the estimates of the front position at each time point. Organisms were
introduced at the origin and subsequently colonized the whole landscape in 4 d (∼ 20 generations). (G and H) Two dispersal events simulated according to the
generalized model equation, with initial conditions as at the second experimental time point. Data are binned in 5-cm intervals, typical length scale of the process.
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Fig. 2, in six replicated dispersal events (Fig. 2 A–F). Organisms
introduced at one end of the landscape rapidly formed an ad-
vancing front that propagated at a remarkably constant speed
(Fig. 3 and Table S1). The front position at each time was cal-
culated as the first occurrence, starting from the end of the
landscape, of a fixed value of the density (Fig. 2). As for traveling
waves predicted by the Fisher–Kolmogorov equation, the mean
front speed in our experiment is notably constant for different
choices of the reference density value (Fig. 3C).
The species’ traits r, K, and D were measured in independent

experiments (Table 1). In the local-growth experiment, a low-
density population of Tetrahymena sp. was introduced evenly
across the landscape, and its density was measured locally at
different times. Recorded density measurements were fitted to
the logistic growth model, which gave the estimates for r and K

(Table 1 and Table S2). In the local unimpeded movement ex-
periment, we computed the mean-square displacement (SI Text
and Fig. S1) of individuals’ trajectories (42–44) to estimate the
diffusion coefficient D in density-independent conditions (Table
1 and Materials and Methods). The growth and movement mea-
surements were performed in the same linear landscape settings
as in the dispersal experiment and therefore are assumed to
accurately describe the dynamics at the front of the traveling
wave in the dispersal events.
The comparison of the predicted front speed v= 2

ffiffiffiffiffiffi
rD

p
to the

wavefront speed measured in the dispersal experiment, vo,
yields a compelling agreement. The observed speed in the
dispersal experiment was vo = 52:0± 1:8 cm=d (mean ± SE)
(Table S1), which we compare with the predicted one
v= 51:9± 1:1 cm/d (mean ± SE). The two velocities are com-
patible within one SE. A t test between the replicated observed
speeds and bootstrap estimates of v= 2

ffiffiffiffiffiffi
rD

p
gives a P value of

p= 0:96 (t= 0:05, df = 9). Thus, the null hypothesis that the mean
difference is 0 is not rejected at the 5% level, and there is no in-
dication that the two means are different. As the measurements of
r and D were performed in independent experiments, at scales that
were orders of magnitude smaller than in the dispersal events, the
agreement between the two estimates of the front velocity is
deemed remarkable.
Although the Fisher–Kolmogorov equation correctly predicts

the mean speed of the experimentally observed invading wave-
front, its deterministic formulation prevents it from reproducing
the variability that is inherent to biological dispersal (21). In
particular, it cannot reproduce the fluctuations in range expan-
sion between different replicates of our dispersal experiment
(Fig. 3A). We propose a generalization of the Fisher–Kolmogorov
equation (Materials and Methods) accounting for demographic
stochasticity that is able to capture the observed variability. The
strength of demographic stochasticity is embedded in an addi-
tional species’ trait σ ½T−1=2�. In this stochastic framework, the de-
mographic parameters r, K, and σ were estimated from the local
growth experiment with a maximum-likelihood approach (Table 1
and Materials and Methods) whereas the estimate of the diffusion
coefficient D was left unchanged (SI Text). We then used these
local independent estimates to numerically integrate the general-
ized model equation (45, 46), with initial conditions as in the dis-
persal experiment, and found that the measured front positions are
in accordance with simulations (Fig. 3A and Fig. S2). In particular,
most experimental data are within the 95% confidence interval for
the simulated front position, and the observed range variability is
well-captured by our stochastic model (Fig. 3B). Accordingly,
the estimate for the front speed and its variability in the ex-
periment are in good agreement with simulations (SI Text).
Demographic stochasticity can therefore explain the observed
variability in range expansions.

Discussion
To summarize, we suggest that measuring and suitably interpreting
local processes allows us to accurately predict the main features of

0 100 200 300 400 500
0

20

40

60

80

Reference density (ind/cm)

M
ea

n 
sp

ee
d 

(c
m

/d
)

0 1 2 3 4
0

10

20

30

Time (d)

95
%

 r
an

ge
 w

id
th

 (
cm

)

A

CB

0 1 2 3 4

0

50

100

150

200

250

Time (d)

F
ro

nt
 p

os
iti

on
 (

cm
)

Fig. 3. Range expansion in the dispersal experiment and in the stochastic
model. (A) Front position of the expanding population in six replicated dis-
persal events; colors identify replicas as in Fig. 2. The dark and light gray
shadings are, respectively, the 95% and 99% confidence intervals computed
by numerically integrating the generalized model equation, with initial
conditions as at the second experimental time point, in 1,020 iterations. The
black curve is the mean front position in the stochastic integrations. (B) The
increase in range variability between replicates in the dispersal experiment
(blue diamonds) is well described by the stochastic model (red line). (C) Mean
front speed for different choices of the reference density value at which
we estimated the front position in the experiment; error bars are smaller
than symbols.

Table 1. Experimentally measured species’ traits (mean ± SE)

Demographic traits

Movement traitsDeterministic model Stochastic model

r = 4:9±0:5 d−1 r =6:1±0:8 d−1 D=0:17± 0:01 mm2 s−1

K =901±130 ind  cm−1 K =903±135 ind  cm−1 τ= 3:9±0:4 s
σ =25±5 d−1

2

Demographic traits were estimated both in the framework of the deterministic logistic equation and in the
framework of the stochastic logistic Eq. 3. Demographic stochasticity strongly affects the dynamics at low
densities; thus, a different value for the growth rate r is obtained in the stochastic model, compared with the
deterministic one. ind, individual.
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global invasions. The deterministic Fisher–Kolmogorov equation is
shown to correctly predict the mean speed of invasion but cannot
capture the observed variability. Instead, characterizing the in-
herent stochasticity of the biological processes involved allows us to
predict both themean and the variability of range expansions, which
is of interest for practical purposes, such as the delineation of worst-
case scenarios for the spread of invasive species. Our phenome-
nological approach allows us to make predictions on the spread of
organisms without the need to introduce all details on the move-
ment behavior, biology, or any other information. Such details are
synthesized in three parameters describing the density-independent
yet stochastic behavior of individuals riding the invasion wave. The
parsimony of the model allows generalization to organisms with
different biology (e.g., growth rates and diffusion coefficients are
available for several species in the literature) (6) and supports the
view that our protocol may possibly provide a general predictive
framework for biological invasions in natural environments.
In conclusion, we have shown that, at least in the simple eco-

logical settings investigated here, predictability remains, notwith-
standing biological fluctuations, owing to the stochastic treatment
devised. We confirm that deterministic models can be applied to
describe ecological processes and show that additional informa-
tion on the stochasticity acting at the mesoscopic scale allows us
to estimate fluctuations at the macroscopic scale. We believe that
our results might have implications for the dynamics of phenomena
other than species’ invasions, such as morphogenesis (23, 47), tu-
mor growth (23, 25, 36), and the spreading of epidemics (23, 30, 34,
35), which have been traditionally modeled with reaction–diffusion
equations.

Materials and Methods
Study Species. The species used in this study is Tetrahymena sp. (Fig. 1B), a
freshwater ciliate, purchased from Carolina Biological Supply. Individuals of
Tetrahymena sp. have typical linear size (equivalent diameter) of 14 μm (41).
Freshwater bacteria of the species Serratia fonticola, Breviacillus brevis, and
Bacillus subtilis were used as a food resource for ciliates, which were kept in
a medium made of sterilized spring water and protozoan pellets (Carolina
Biological Supply) at a density of 0.45 gL−1. The experimental units were
kept under constant fluorescent light for the whole duration of the study, at
a constant temperature of 22 °C. Overall, experimental protocols are well-
established (16, 41, 48–50), and the contribution of laboratory experiments
on protists to the understanding of population and metapopulation dy-
namics proved noteworthy (48).

Experimental Setup. Experiments were performed in linear landscapes (Fig.
1A) filled with a nutrient medium and bacteria of the three species above
mentioned. The linear landscapes were 2 m long, 5 mm wide, and 3 mm
deep, respectively, and 105, 350, and 200 times the size of the study or-
ganism (41). Landscapes consisted of channels drilled on a Plexiglas sheet. A
second sheet was used as lid, and a gasket was introduced to avoid water
spillage (Fig. 1A). At one end of the landscapes, an opening was placed for
the introduction of ciliates. The Plexiglas sheets were sterilized with a 70%
(vol/vol) alcohol solution, and gaskets were autoclaved at 120 °C before
filling the landscape with medium. As Plexiglas is transparent, the experi-
mental units could be placed under the objective of a stereomicroscope, to
record pictures (for counting of individuals) or videos (to track ciliates).
Individuals were observed to distribute mainly at the bottom of the land-
scape, whose length was three orders of magnitude larger than its width (w)
and depth and two orders of magnitude larger than the typical length scale
of the process ð ffiffiffiffiffiffiffiffi

D=r
p ’ 5 cmÞ. The population was thus assumed to be

confidently well-mixed within the cross section after a time ∼w2=D, which
in our case is of the order of a minute after introduction of the ciliates in
the landscape.

Experimental Protocol.Weperformed three independent and complementing
experiments, specifically: (i) a dispersal experiment was carried out to study
the possible existence and the propagation of traveling invasion wavefronts
in replicated dispersal events; (ii) a growth experiment was run to obtain
estimates of the demographic species’ traits, which are r and K in the de-
terministic framework of Eq. 1 and r, K, and σ in the stochastic framework of
Eq. 2; (iii) a local movement experiment was performed to study the local

unimpeded movement of Tetrahymena sp. over a short timescale (in a time
window t � r−1), to estimate the diffusion coefficientD for our study species,
independently from the dispersal and growth experiments.
Dispersal experiment. We performed six replicated dispersal events in the
linear landscapes. After filling the landscapes with medium and bacteria, a
small ensemble of Tetrahymena sp. was introduced at the origin. Subse-
quently, the density of Tetrahymena sp. was measured at 1-cm intervals, five
times in the first 48 h and twice in the last 48 h. The whole experiment lasted
for about 20 generations of the study species.
Local growth experiment. We performed five replicated growth measurements
in the linear landscapes, to measure the demographic species’ traits, in the
same environmental conditions as in the dispersal experiment, but in-
dependently from it. A low-density culture of Tetrahymena sp. was in-
troduced in the whole landscape, and its density was measured by taking
pictures and counting individuals, covering a region of 7 cm along the
landscape. Density measurements were performed at several time points for
each of the five replicates, in a time window of 3 d.
Local movement experiment. We performed four additional, replicated dis-
persal events in the linear landscapes, initialized in the same way as in the
dispersal experiment, to measure the diffusion coefficient of Tetrahymena
sp. The diffusion coefficient D is the proportionality constant that links the
mean square displacement of organisms’ trajectories to time (42, 44) (SI
Text). Macroscopically, it relates the local flux to the density of individuals,
under the assumption of steady state (44). To estimate the diffusion co-
efficient, we recorded several videos of individuals moving at the front of
the traveling wave (at low density), reconstructed their trajectories (42, 43),
and computed their mean square displacement Æx2ðtÞæ= Æ½xðtÞ− xð0Þ�2æ.

Video recording.We recorded videos of Tetrahymena sp. at the front of the
traveling wave in four replicated dispersal events, at various times over 4 d.
The area covered in each video was of 24 mm in the direction of the land-
scape and 5 mm orthogonal to it. Each video lasted for 12 min.

Trajectories reconstruction. For each recorded video, we extracted individuals’
spatial coordinates in each frame and used the MOSAIC plugin for the soft-
ware ImageJ to reconstruct trajectories (43). The goodness of the tracking was
checked on several trajectories by direct comparison with the videos. Examples
of reconstructed trajectories can be seen in Fig. 1C or in Movie S1.

Diffusion coefficient estimate. For each video, the square displacement of
each trajectory in the direction parallel to the landscape was computed at all
time points and then averaged across trajectories. Precisely, for each tra-
jectory i we computed the quantity x2i ðtÞ= ½XiðtÞ−Xið0Þ�2, where XiðtÞ is the
1-dimensional coordinate of organism i at time t in the direction parallel to
the landscape and Xið0Þ is its initial position. The mean square displacement
in a video was then computed as the mean of x2i ðtÞ across all trajectories,
that is, Æx2ðtÞæ= 1

N

P
i x

2
i ðtÞ (where N is the total number of trajectories). A

typical measurement of Æx2ðtÞæ is shown in Fig. S1. As shown in the figure,
there exists an initial correlated phase, which we discuss in SI Text. To
estimate the diffusion coefficient from the mean square displacement,
we fitted the measured Æx2ðtÞæ to the function Æx2ðtÞæ= 2Dt − 2Dτ½1− e−t=τ �
(SI Text) with the two parameters D (diffusion coefficient) and τ (corre-
lation time). The total number of recorded videos was 28, that is, 7 for
each replica.

Mathematical Models. Deterministic framework. The Fisher–Kolmogorov equation
(1, 2). reads:

∂ρ
∂t

=D
∂2ρ
∂x2

+ rρ
h
1−

ρ

K

i
, [1]

where ρ= ρðx,tÞ is the density of organisms, r the species’ growth rate, D the
diffusion coefficient, and K the carrying capacity. Eq. 1 is known to foster the
development of undeformed traveling waves of the density profile.
Mathematically, the existence of traveling wave solutions implies that
ρðx,tÞ= ρðx − vtÞ, where v is the speed of the advancing wave. Fisher (1)
proved that traveling wave solutions can only exist with speed v ≥ 2

ffiffiffiffiffiffi
rD

p
, and

Kolmogorov (2) demonstrated that, with suitable initial conditions, the
speed of the wavefront is the lower bound.

The microscopic movement underlying the Fisher–Kolmogorov Eq. 1 is
brownian motion (25, 51). Investigation of the movement behavior of Tet-
rahymena sp., instead, shows that individuals’ trajectories are consistent
with a persistent random walk with an autocorrelation time τ= 3:9± 0:4 s.
The corresponding macroscopic equation for the persistent random walk
should thus be the reaction–telegraph equation (25) (SI Text). Nonetheless,
as the autocorrelation time for our study species is much smaller than the
growth rate r ðτr ∼ 10−4Þ, Eq. 1 provides an excellent approximation to the
reaction–telegraph equation. See SI Text for a detailed discussion.
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Stochastic framework. The stochastic model equation reads:

∂ρ
∂t

=D
∂2ρ
∂x2

+ rρ
h
1−

ρ

K

i
+ σ

ffiffiffi
ρ

p
  η, [2]

where η= ηðx,tÞ is a Gaussian, zero-mean white noise (i.e., with correlations
Æηðx,tÞηðx′,t′Þæ= δðx − x′Þδðt − t′Þ, where δ is the Dirac’s delta distribution) and
σ> 0 is constant. We adopt the Itô’s stochastic calculus (51), as appropriate in
this case. Note, in fact, that the choice of the Stratonovich framework would
make no sense here, as the noise term would have a constant nonzero mean
(22, 51), which would allow an extinct population to possibly escape the
zero-density absorbing state. The square-root multiplicative noise term in
Eq. 2 is commonly interpreted as describing demographic stochasticity in
a population (46) and needs extra care in simulations (45, 52). In particular,
standard stochastic integration schemes fail to preserve the positivity of ρ.
We adopted a recently developed split-step method (45) to numerically in-
tegrate Eq. 2. This method allows us to perform the integration with rela-
tively large spatial and temporal steps maintaining numerical accuracy.

Data from the growth experiment were fitted to the equation:

dρ
dt

= rρ
h
1−

ρ

K

i
+

σffiffi
l

p ffiffiffi
ρ

p
  η, [3]

where ρ= ρðtÞ is the local density, η= ηðtÞ is a Gaussian, zero-mean white
noise (i.e., with correlations ÆηðtÞηðt′Þæ= δðt − t′Þ), σ > 0 is constant, and l is the

size of the region over which densities were measured (SI Text). Eq. 3
describes the time-evolution of the density in a well-mixed patch of length
l (SI Text). The likelihood function for Eq. 3 can be written as:

LðθÞ= ∏
n

j= 2
P
�
ρ
�
tj
�
,tj
��ρ�tj−1

�
,tj−1; θ

�
, [4]

where n is the total number of observations in the growth time series,
θ= ðr,K,σÞ is the vector of demographic parameters, and Pðρ,tjρ0,t0; θÞ is the
transitional probability density of having a density of individuals ρ at time t,
given that the density at time t0 was ρ0 (for a given θ). The transitional
probability density Pðρ,tjρ0,t0; θÞ satisfies the Fokker–Planck equation asso-
ciated to Eq. 3 (SI Text), which was solved numerically for all observed
transitions and choices of parameters (SI Text), adopting the implicit Crank–
Nicholson scheme. The best fit parameters were those that maximized the
likelihood function Eq. 4 (Table 1 and SI Text).
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Experiments
1.1. Dispersal Experiment. Density profiles in the six replicated
dispersal events, at successive times, are shown in Fig. 2 A–F.
Collected data were binned in 5-cm bins, which corresponds to
the typical length scale of the dispersal process ð ffiffiffiffiffiffiffiffi

D=r
p ’ 5 cmÞ.

Individuals of Tetrahymena sp., initially localized at one end of
the landscape, colonized the whole system in 4 d. The position of
the wavefront at each time was estimated by looking for the first
occurrence, starting from the end of the landscape, of a fixed
value of the density (more precisely, we linearly interpolated the
density profile between the first occurrence of a density value
above threshold and the following spatial point), which we set at
ρ⋆ = 200 ind=cm (results are not affected by different choices of
this reference value) (Fig. 3C). The position of the wavefront at
different times is shown in Fig. 3A. As noticeable, there is an
initial growth phase followed by a linear increase in the front’s
coordinate with time. We fitted a linear model (least-squares fit)
to each replica in the linear region (1–4 d) and found a mean
speed of vo = 52:0± 1:8 cm=d (mean ± SE). Note that the exis-
tence of an initial nonlinear spread has been documented in
several case studies (1–3). Shown in Table S1 are the observed
velocities in the six replicas (Fig. 3).

1.2. Local Growth Experiment. We discuss here the analysis of
growth measurements according to the deterministic framework
of the Fisher–Kolmogorov equation. For the analysis of these
data in the stochastic framework, see section 2.2.
We report in Table S2 the best-fit parameters of the deter-

ministic logistic model dρ=dt= rρ½1− ρ=K � to the growth mea-
surements data. Note that the variability in the carrying capacity
among replicas resembles the variability in the mean density
observed in the dispersal experiment in the region behind the
wavefront (Fig. 2).

1.3. Local Movement Experiment. We ran four additional dispersal
events, independent from the dispersal experiment, and recorded
videos of individuals moving ahead of the advancing wavefront,
where the density was low. To obtain experimental estimates of the
diffusion coefficient, we fitted themeasured values of hx2ðtÞi to the
equation hx2ðtÞi= 2Dt− 2Dτ½1− e−t=τ�, for all videos of each rep-
lica (see section 4.2.1 for a derivation of this equation in the
context of persistent random walks). The mean value of the dif-
fusion coefficient is D= 0:17± 0:01 mm2=s = 140± 10 cm2=d;
the mean autocorrelation time is τ= 3:9± 0:4 s.
Note that we havemeasured the diffusion coefficient by looking

at individuals at the front of the traveling wave, as these are the
individuals responsible for the colonization of empty space.
During the dispersal experiment, we also measured the diffusion
coefficient of Tetrahymena sp. in the bulk of the wave, that is,
where the population was at high density. We observed that
trajectories differ qualitatively between the bulk and the front of
the wave, and this difference reflects in a much smaller diffusion
coefficient estimate where the population is at carrying capacity.
In fact, in the bulk of the wave, we measured a mean diffusion
coefficient of Dbulk = 0:003± 0:001 mm2=s, much smaller than at
the wavefront. Such density-dependent effects, however, are not
assumed to be operating at the low densities that determine the
speed of the front, and the results support our assumption.

1.4. Speed of theWavefront: Deterministic Prediction and Observations.
Here, we compare the wavefront speeds observed in the dis-
persal experiment to predictions of the theory (deterministic

Fisher–Kolmogorov Eq. 1) (Materials and Methods), for which
we use the independent estimates of r and D (as in sections 1.2
and 1.3). Use of the mean value of r= 4:9± 0:5 d−1 (mean ± SE)
and D= 140± 10 cm2=d (mean ± SE) gives a predicted speed of
vFK = 2

ffiffiffiffiffiffi
rD

p
= 52:4± 3:3 cm/d. In the main text, we adopted

a bootstrap approach and computed the quantity 2
ffiffiffiffiffiffi
rD

p
for all

possible combinations of the r and D values measured in the
growth and movement experiments. The mean speed computed
with this approach is v= 51:9± 1:1 cm/d (mean ± SE). Both vFK
and v are very close and compatible with the mean observed speed
in the dispersal experiment, vo = 52:0± 1:8 cm=d (mean ± SE). To
further compare the predicted values for the speed in the bootstrap
approach to the observed speed in the dispersal experiment, we
performed a t test between the two sets. The t test gives a P value
p= 0:96 (t= 0:05,  df = 9); thus, the null hypothesis that the mean
difference is 0 is not rejected at the 5% level. Therefore, there is
no indication that the two means are different.

Stochastic Model
The Fisher–Kolmogorov Eq. 1 (Materials and Methods) is de-
terministic and therefore cannot reproduce the variability ob-
served in biological dispersal (4) (Fig. 3). To address fluctuations
in the range expansion of invading species, we propose a stochastic
partial differential equation (SPDE), that is, a generalization of
Eq. 1, accounting for demographic stochasticity. The SPDE reads:

∂ρ
∂t

=D
∂2ρ
∂x2

+ rρ
h
1−

ρ

K

i
+ σ

ffiffiffi
ρ

p
η; [S1]

where η is a Gaussian, zero-mean white noise [i.e., hηðx; tÞ
ηðx′; t′Þi= δðx− x′Þδðt− t′Þ, with δ the Dirac’s delta function] and
σ > 0 measures the noise strength. We adopt the Itô’s stochastic
calculus (5), as appropriate in this case. Note, in fact, that the
choice of the Stratonovich framework would make no sense here,
as the noise term would have a constant nonzero mean (5, 6),
which would allow an extinct population to possibly escape the
zero-density absorbing state. We simulated Eq. S1 using the
estimates for r, K, and σ obtained with a maximum likelihood
approach applied to the growth experiment data (section 2.2)
and D as estimated in the local movement experiment (section
1.3). The square-root multiplicative noise term in Eq. S1 is com-
monly interpreted as describing demographic stochasticity in
a population (7) and needs extra care in simulations (8, 9). In
particular, standard stochastic integration schemes fail to pre-
serve the positivity of ρ. We adopted a recently developed
split-step method (9) (see also section 2.1) to numerically inte-
grate Eq. S1. This method allows us to perform the integration
with relatively large spatial and temporal steps maintaining nu-
merical accuracy. Fig. 2 G and H shows two integrations of Eq. 1
with initial conditions as in Fig. 2 A and B at the second exper-
imental time point. Simulations were performed with reflective
boundary conditions at x= 0 cm and x= 220 cm and with the
parameters r= 6:1 d−1, K = 903 ind=cm, σ = 25  d−

1
2 (results of

the maximum likelihood estimation) (see section 2.2) and
D= 140 cm2=d. The integration steps were Δx= 5 cm and
Δt= 0:002 d, which were able to reproduce the deterministic
behavior and speed for very small values of the noise strength
σ. It should be noted that the mathematical structure of Eq. S1
allows the formation of traveling waves, although endowed with
a speed slower than 2

ffiffiffiffiffiffi
rD

p
. The reader is referred to the literature

for a detailed account of the mathematical details (6, 10, 11).
Suffice it here to note that the parameter identification of the
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demographic traits r; K , and σ on the growth experiment data
accounts for the relative balance of the processes and results in
a reliable prediction of both the mean speed and the range vari-
ability (section 2.3).

2.1. Spatial Discretization. Eq. S1 is interpreted as the continuum
limit of a set of coupled Itô equations resulting from a discretiza-
tion of space (9). Let Δx be the step of spatial discretization on a
1D lattice. The discretization reads:

dρi
dt

ðtÞ= D

ðΔxÞ2 ½ρi+1ðtÞ+ ρi−1ðtÞ− 2ρiðtÞ�+

+ rρiðtÞ
�
1−

ρiðtÞ
K

�
+

σffiffiffiffiffiffi
Δx

p
ffiffiffiffiffiffiffiffiffi
ρiðtÞ

p
ηðtÞ;

[S2]

where i identifies the lattice site and the term
ffiffiffiffiffiffi
Δx

p
ensures

proper normalization in the continuum limit (12). This spatial
discretization allows us to compare the noise term in Eq. S1 to
the local noise acting at a lattice site of size Δx. In particular, it
allows us to estimate the noise strength σ by parameter identifi-
cation on the growth experiment data, where we looked at the
density of a single site i of size l= 7 cm (a length comparable with
the step size adopted in the numerical integration, that is Δx= 5
cm). The equation governing the density of the single site i in the
growth experiment is thus:

dρ
dt

ðtÞ= rρðtÞ
�
1−

ρðtÞ
K

�
+

σffiffi
l

p
ffiffiffiffiffiffiffiffi
ρðtÞ

p
ηðtÞ; [S3]

where the diffusion term is neglected as we are in a well-mixed set-
ting and we dropped the i subscript as we only have one site. The
maximum likelihood approach described in the following section
allows us to estimate r, K, and σ from the experimental growth data.

2.2. Parametric Inference in the Stochastic Framework.We fit Eq. S3
to the growth data (local growth experiment), with fitting parame-
ters r,K, and σ. The likelihood function for Eq. S3 can be written as:

LðθÞ= ∏
n

j= 2
P
�
ρ
�
tj
�
; tjjρ

�
tj−1

�
; tj−1; θ

�
; [S4]

where n is the total number of observations in the growth time
series, θ= ðr;K; σÞ is the vector of demographic parameters, and
Pðρ; tjρ0; t0; θÞ is the transitional probability density of having
a density of individuals ρ at time t, given that the density at time
t0 was ρ0 (for a given θ). The transitional probability density
Pðρ; tjρ0; t0; θÞ satisfies the Fokker–Planck equation associated
with Eq. S3, that is:

∂
∂t
Pðρ; tjρ0; t0; θÞ= −

∂
∂ρ

h
rρ
	
1−

ρ

K



Pðρ; tjρ0; t0; θÞ

i
+

+
σ2

2l
∂2

∂ρ2
½ρPðρ; tjρ0; t0; θÞ�:

[S5]

Maximization of the likelihood is equivalent to the minimization
of the negative log-likelihood −logLðθÞ, which is computation-
ally less expensive. To compute the likelihood for a fixed set of
parameters θ, one has to solve numerically the Fokker–Planck
Eq. S5 for all observed transitions, with the ½tj; ρðtjÞ� as measured
in the experiment. It is computationally more accurate to solve
Eq. S5 in terms of the cumulative distribution function (CDF), as
its initial condition in the transition ½tj−1; ρðtj−1Þ�→ ½tj; ρðtjÞ� can
be expressed as a step function instead of a delta function, the
first one being more accurate in the numerical approximation
(13). The transitional probability densities (solutions of Eq. S5)
can then be recovered by numerical differentiation. The numerical

integration was performed adopting the implicit Crank–Nicolson
scheme (13); the minimization was performed with the software
MATLAB, adopting the active-set algorithm in a large domain.
We verified that different initial conditions for the parameters
led to the same estimate for the minimum, which is thus inter-
preted as the global minimum of the negative log-likelihood
function, that is, the global maximum for the likelihood func-
tion. The set of demographic parameters that maximized the
likelihood function is r= 6:1± 0:8 d−1, K = 903± 135 ind=cm,
σ = 25± 5 d−

1
2 (mean ± SE).

2.3. Comparison with Experimental Data. Wavefront. The black curve
in Fig. 3A is the mean position of the front over 1,020 in-
tegrations of Eq. S1, with 170 iterations starting from each ex-
perimental density profile at the second measurement time point
(Fig. 3A and Materials and Methods). The dark and light gray
shadings in Fig. 3A represent, respectively, the 95% and 99%
intervals for the front’s position. The increase in width for the
front’s position is captured by the red curve in Fig. 3B, which
represents the 95% interval width for the front’s position at each
time step. Simulations are in quantitative agreement with data
(Fig. 3B). Examples of the front’s position in different simu-
lations of the stochastic equation are shown in Fig. S2.
Speed of the front. We measured the speed of the front in the
stochastic simulations by fitting the front’s position at eight equally
spaced time points in the time interval ½1− 4� d, over 1,020 in-
tegrations of Eq. S1. The resultingmean speed of the front was 52.1
cm/d; the SD was 4.2 cm/d. The mean speed in the dispersal ex-
periment was 52.0 cm/d, and the measured SD was 4.3 cm/d.

On the Diffusion Coefficient Estimates in Field Studies
In the literature, reaction–diffusion processes applied to ecolog-
ical processes were sometimes criticized because of unsatisfactory
fits to some empirical observations. For instance, reaction–diffusion
models have been questioned for neglecting the fact that organ-
isms move at a finite speed (3, 14) or for predicting slower spreads
with respect to observations (3). The presence of rare long-distance
dispersers has been invoked by some authors (1, 3) to account for
the observation of faster-than-predicted spreads. We argue that
the origins of some mismatches between empirical observations
and reaction–diffusion models could be due to imprecise esti-
mates of the diffusion coefficient, which proved to be the most
delicate measurement also in our experiment. In fact, the diffu-
sion coefficient is traditionally measured through the mean
square displacement (MSD) of individuals or collective move-
ment, computed with the available data. These data might refer to
a timescale that is too short to be in the region of linear increase
of MSD with time; that is, one might be still observing the auto-
correlated phase that is shown in Fig. S1 for small times. Com-
puting the MSD in the auto-correlated region leads to a lower
estimate of the diffusion coefficient, which in turn leads to a
smaller predicted speed for the advancing wavefront. When
computing the MSD, therefore, one should compute it at differ-
ent time points until the autocorrelated and linear regimes are
discernible. Notably, the duration of the autocorrelated phase is
expected to vary significantly from species to species (15). Addi-
tionally, our experiment supports that the diffusion coefficient
estimate should be performed in density-independent conditions.

Theoretical Background
Reaction–diffusion models have been shown to accurately de-
scribe the spread of organisms in many comparative studies (1,
16, 17) and are here experimentally confirmed. We acknowledge
that models other than reaction–diffusion equations, such as
integro-difference equations involving dispersal kernels, are best
suited to describe dispersal of organisms that exhibit distinct
reproductive and dispersive phases (3, 4). However, for many
organisms, especially those with continuous, nonoverlapping
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generations and temporally unstructured dispersal–reproductive
dynamics, the reaction–diffusion approach is highly appropriate
(16–18). Refinements of reaction–diffusion models have also been
put forward in the literature. For instance, reaction–telegraph
models were introduced to account for the finite movement
speed of individuals, resulting in a correction to the wavefront
speed (14), which is, however, negligible for our study species, as
we show in the following sections. Here, we briefly review the
theoretical framework of reaction–diffusion processes and discuss
the relationship to reaction–telegraph processes, with reference to
our experiment. The interested reader can refer to specialized
texts for further investigation and generalizations (5, 19, 20).

4.1. The Fisher–Kolmogorov Equation. 4.1.1. Brownian motion and the
mean square displacement of particles. The diffusion equation

∂ρ
∂t

ðx; tÞ=D
∂2ρ
∂x2

ðx; tÞ [S6]

describes the evolution of the density of an ensemble of indepen-
dent random walkers (5). The diffusion coefficient D can be
measured as the proportionality constant that links the mean
square displacement to time as (5):

�
x2t
�
= 2Dt; [S7]

with D as in Eq. S6.
4.1.2. Reaction–diffusion equations and the Fisher–Kolmogorov equation.
Macroscopically, or phenomenologically, the continuity equation
in the presence of a reaction term reads:

∂ρ
∂t

= −
∂J
∂x

+FðρÞ: [S8]

Assuming proportionality between the flux J and the density
gradient ∂ρ=∂x via the diffusion coefficient, one finds the so-
called reaction–diffusion equation (18, 20–22):

∂ρ
∂t

=D
∂2ρ
∂x2

+FðρÞ: [S9]

If the reaction term FðρÞ is logistic, one finds the Fisher–Kolmo-
gorov equation:

∂ρ
∂t

=D
∂2ρ
∂x2

+ rρ
h
1−

ρ

K

i
; [S10]

where ρ is the density of organisms, D is the diffusion coefficient
of the species, r is its growth rate, and K its carrying capacity.
4.1.3. Traveling waves in the Fisher–Kolmogorov equation. The Fisher–
Kolmogorov Eq. S10 is probably the best known example of
an equation that accepts traveling wave solutions. A traveling
wave is a wave that travels without change of shape; that is, the
density profile along a line moves rigidly in time without de-
formation (Fig. 1E). Mathematically, these dynamics of propa-
gation mean that, if uðx; tÞ is a traveling wave solution of
a reaction–diffusion equation, then uðx; tÞ is a function of x− vt,
where v is the speed of the wave; that is, uðx; tÞ= uðx− vtÞ.
Dimensional analysis of Eq. S10 shows that the speed is

v∝
ffiffiffiffiffiffi
rD

p
. Fisher (21) proved that traveling wave solutions can only

exist with speed v≥ 2
ffiffiffiffiffiffi
rD

p
and Kolmogorov (22) demonstrated

that, with suitable and reasonable initial conditions, the verified
speed of the wavefront is equal to the lower bound; that is,

v= vFK = 2
ffiffiffiffiffiffi
rD

p
: [S11]

For any concave FðρÞ in Eq. S9, that is, FðρÞ≤ ρF′ð0Þ, the front
velocity has been shown to be equal to vRD = 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DF′ð0Þp

(20).
The interested reader can refer to the original works by Fisher

(21) and Kolmogorov (22) or read one of the many good books
on the topic (18, 20).

4.2. The Reaction–Telegraph Equation. The diffusion equation has
been widely used to describe the movement of organisms (2, 18). It
is clear, however, that individuals do not perform exact random
walks at themicroscopic scale (where “microscopic” here is used to
refer to the typical length scale of an organism). What is implied
when adopting diffusion equations to describe movement behav-
iors is that there exists an appropriate mesoscopic scale in which
the collective behavior of organisms is indistinguishable from that
of an ensemble of randomwalkers (1). In this section, we justify why
the adoption of a reaction–diffusion equation is appropriate for our
system, which follows from the fact that the correlation time in the
trajectories performed by individuals of the species Tetrahymena sp.
is much smaller than the typical timescale of the dispersal process
or, more precisely, the growth rate of the species (Eq. S19).
4.2.1. Persistent random walk.One can describe the movement of an
individual (particle) as a sequence of jumps of length Δx and
duration Δt. A model for a correlated random walk was in-
troduced by R. Fürth (23) and assumes that particles move along
an infinite line at a constant speed γ, with a probability μ per unit
time to reverse its direction of motion. Precisely, the probability
for the particle to continue in the direction of motion is given
by 1− μΔt and the probability to reverse its direction is μΔt, in
such a way that the speed limΔx;Δt→0Δx=Δt= γ is constant.
With these assumptions (20) one obtains the telegraph equa-

tion for the density of particles:

1
2μ

∂2ρ
∂t2

+
∂ρ
∂t

=
γ2

2μ
∂2ρ
∂x2

; [S12]

which we rewrite as

τ
∂2ρ
∂t2

+
∂ρ
∂t

=D
∂2ρ
∂x2

; [S13]

where τ−1 = 2μ is the correlation time of the turning process and
D= γ2=ð2μÞ. Note that Eq. S13 differs from the diffusion equation
for the additional term τ ∂2ρ

∂t2 . Eq. S13 is a hyperbolic equation, and
therefore information cannot travel faster than the speed of particles
γ. In a way, then, the telegraph equation is physically more appro-
priate than the diffusion equation, as for the diffusion equation the
probability density of finding a particle in an infinitesimal interval
around ðx; tÞ is larger then zero for all x and t> 0; that is, signals can
travel at infinite speed. In our specific case, the correlation time τ is
very small, so we argue that the term τ ∂2ρ

∂t2 is negligible compared
with the other terms in the equation, and thus the system is well-
described by the diffusion equation. To estimate the parameters
τ and D from experimental data, one can compute the value for
the mean square displacement along the line, that is,

�
x2
�
=

Z+∞

−∞

dx  x2ρðx; tÞ: [S14]

Multiplying Eq. S13 by x2 and integrating one has

τ

Z+∞

−∞

dx  x2
∂2ρ
∂t2

ðx; tÞ+
Z+∞

−∞

dx  x2
∂ρ
∂t

ðx; tÞ=

=D
Z+∞

−∞

dx  x2
∂2ρ
∂x2

ðx; tÞ;
[S15]
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which reads

τ
d2
�
x2
�

dt2
+
d
�
x2
�

dt
= 2D; [S16]

assuming that ρðx; tÞ, ∂ρ
∂t ðx; tÞ and ∂2ρ

∂t2 ðx; tÞ go to zero sufficiently
fast for x→ ±∞. Assuming further that ρðx; 0Þ= δðxÞ (where δ is
the delta function) and ∂p=∂tðx; tÞjt=0 = 0, one has hx2ijt=0 = dhx2i=
dtjt=0 = 0 and

�
x2ðtÞ�= 2Dt− 2Dτ

h
1− e−t=τ

i
: [S17]

Fig. S1 shows that Eq. S17 provides a very good fit to the exper-
imentally measured mean square displacement for individuals of
Tetrahymena sp.
4.2.2. The reaction–telegraph equation. One can amend the instan-
taneous adjustment of the flux to the density gradient implied by
Fick’s first law with the introduction of a relaxation time τ, which
leads to the reaction–telegraph equation (14, 20)

τ
∂2ρ
∂t2

+
�
1− τF′ðρÞ� ∂ρ

∂t
=D

∂2ρ
∂x2

+FðρÞ: [S18]

Eq. S18 can be obtained combining the telegraph Eq. S13 with
kinetics (20). Eq. S18 differs from the reaction–diffusion Eq. S9
for the additional term τ ∂2ρ

∂t2 − τF′ðρÞ ∂ρ∂t . Solutions of Eq. S18

converge to solutions of the reaction–diffusion equation as τ→ 0
(20, 24). In our case, we argue that the correlation time τ is
sufficiently small to consider the process as well described by
the reaction–diffusion equation. We will give quantitative sup-
port to this statement in the next section. One can also show that
the introduction of reactions in the persistent random-walk
equations leads to the reaction–telegraph Eq. S18 (20) with
τ−1 = 2μ and D= γ2=ð2μÞ as in Eq. S13.
4.2.3. Traveling waves in the reaction–telegraph equation. E. E. Holmes
(14) studied the propagation of traveling wavefronts in the re-
action–telegraph equation with logistic reaction F, estimating model
parameters for several case studies. The reaction–telegraph Eq. S18
with logistic growth was shown (25) to accept traveling wave
solutions with speed:

vRT =
2

ffiffiffiffiffiffi
rD

p

1+ τr
=

vFK
1+ τr

[S19]

if rτ< 1; otherwise vRT = ðD=τÞ12. In this perspective, we claim that,
in our specific case, the ratio between the speed of a reaction–
telegraph and that of a reaction–diffusion equation is practically
one. In fact, we find rτ= ð2:2± 0:3Þ · 10−4 so that vRT=vRD > 0:999,
which makes the two processes experimentally undistinguishable.
Therefore, we conclude that our system is well-described by Eq. 1
(Materials and Methods), and this agreement with the Fisher–Kol-
mogorov equation is due to the very small value of the correlation
time τ with respect to the growth rate r.
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Fig. S1. Mean square displacement hx2i of individuals’ trajectories versus time, for a representative video. The red curve is the best fit of the data to the
equation hx2ðtÞi= 2Dt −2Dτ½1− e−t=τ �. After an initial auto-correlated phase, the mean square displacement increases linearly with time. Error bars are ± SE.
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Fig. S2. Front’s position in six integrations of the stochastic model Eq. S1 (compare with experimental positions in Fig. 3A). Each simulation was initialized
from each of the measured density profiles at the second experimental time point.

Table S1. Best-fit estimates of the wavefront speed in six
replicated dispersal events

Replica Speed, cm/d

1 54:6±1:9
2 51:7±2:8
3 48:0±1:5
4 58:0±4:0
5 53:4±1:8
6 46:3±1:0

Errors are ± SE.
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Table S2. Best-fit estimates of the growth rate r and the
carrying capacity K for Tetrahymena sp.

Replica r, d−1 K, ind/cm

1 6:0±0:2 1020±20
2 3:7±0:2 680±30
3 3:8±0:5 950±80
4 5:2±0:7 550±30
5 5:8±0:5 1300±92

Estimates of growth rate r and carrying capacity K obtained in five in-
dependent growth measurements. The fit is performed in the framework of
the deterministic logistic equation. ind, individuals. Errors are ± SE.

Movie S1. Reconstructed trajectories of individuals of Tetrahymena sp. swimming in density-independent conditions at the front of a traveling wave. Dif-
ferent colors identify different individuals.

Movie S1
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