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Mounting theoretical evidence suggests that demographic stochasticity, environmental heterogeneity and biased movement 
of organisms individually affect the dynamics of biological invasions and range expansions. Studies of species spread in 
heterogeneous landscapes have traditionally characterized invasion velocities as functions of the mean resource density 
throughout the landscape, thus neglecting higher-order moments of the spatial resource distribution. Here, we show 
theoretically that different spatial arrangements of resources lead to different spread velocities even if the mean resource 
density throughout the landscape is kept constant. Specifically, we find that increasing the resource autocorrelation length 
causes a reduction in the speed of species spread. The model shows that demographic stochasticity plays a key role in 
the slowdown, which is strengthened when individuals can actively move towards resources. We then experimentally 
corroborated the theoretically predicted reduction in propagation speed in microcosm experiments with the protist Euglena 
gracilis by comparing spread in landscapes with different resource autocorrelation lengths. Our work identifies the resource 
autocorrelation length as a key modulator and a simple measure of landscape susceptibility to biological invasions, which 
needs to be considered for predicting invasion dynamics within naturally heterogeneous environmental corridors.

Environmental fluctuations and heterogeneity are ubiqui-
tous in nature and are thought to affect nearly all aspects 
of ecology, ranging from species coexistence to population 
synchrony, driving range shifts and potentially causing 
abrupt biotic change (With and Crist 1995, With 2002). 
Local population dynamics in temporally fluctuating 
environments have been studied extensively in recent years 
(Gonzalez and Holt 2002, Duncan et  al. 2013), mainly 
with respect to population synchrony (Benton et al. 2001, 
Fox et  al. 2011). Theoretical (Vasseur 2007), experimental 
(Gonzalez and Holt 2002, Fontaine and Gonzalez 2005, 
Massie et al. 2015) and field (García-Carreras and Reuman 
2011) studies have highlighted the relevance of the tempo-
ral autocorrelation structure of environmental fluctuations 
for ecological processes. In fact, environmental variables are 
typically positively correlated (Benincà et al. 2011), that is, 
events that are closer in time or in space are more likely to 
be similar. Focusing on environmental autocorrelation is 
also of interest in view of the global shift towards ‘bluer’ 
climate variables (i.e. more fluctuating) across most con-
tinents (García-Carreras and Reuman 2011). Whereas the 
ecological significance of temporal fluctuations of the envi-
ronment has received much investigation, the implications 

of environmental heterogeneity on spatial dynamics received 
surprisingly little attention (With 2002, Melbourne et  al. 
2007). The effect of spatial heterogeneity of process rates or 
resource distributions may be especially relevant in the con-
text of biological invasions and range shifts (Hastings et al. 
2005, Börger et al. 2008).

Natural environments are almost universally heterogeneous 
(Holyoak et al. 2005). Much of the current understanding 
of species spread, however, is based on theoretical models 
that consider homogeneous landscapes (i.e. landscapes where 
vital rates and mobility are uniform in space). Traditionally, 
the propagation of invasive fronts has been modeled with 
the Fisher–Kolmogorov equation (Fisher 1937, Kolmogorov 
et al. 1937). This non-linear reaction–diffusion equation was 
applied extensively to describe field data (Lubina and Levin 
1988, Andow et al. 1990). Stochastic generalizations of the 
Fisher–Kolmogorov equation showed that demographic 
stochasticity affects the propagation dynamics in uniform 
landscapes, causing a reduction in the front propagation 
speed (Hallatschek and Korolev 2009) and an intrinsic vari-
ability of the process across replicated invasions (Giometto 
et  al. 2014). In recent years, progress has been achieved 
in the theoretical understanding of species spread in more 
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complex, heterogeneous or fluctuating environments 
(Neubert et al. 2000, Melbourne et al. 2007, Dewhirst and 
Lutscher 2009, Méndez et al. 2010, Pachepsky and Levine 
2011, Fronhofer et al. 2017). For example, the study of front 
propagation in landscapes whose spatial structure includes a 
complex topology suggests that the presence of bifurcations 
along the backbone of the propagation may reduce the inva-
sion speed (Méndez et al. 2003, 2004, Campos et al. 2006, 
Bertuzzo et  al. 2007). Temporal fluctuations in mean dis-
persal distances were shown to increase the front propaga-
tion velocity (Ellner and Schreiber 2012), while temporally 
uncorrelated fluctuations in demographic parameters were 
shown to typically reduce it (Méndez et al. 2011).

Here, we focus on biological invasions in landscapes char-
acterized by temporally invariant but spatially heterogeneous 
resource distributions, which could, for example, reflect the 
spatial composition and quality of soil, gap dynamics in for-
ests and subsequent light availability for understory plants 
and their associated herbivore fauna or habitat fragmentation 
due to human land-use (With and Crist 1995, With 2002). 
The investigation of species spread in spatially heterogeneous 
landscapes has mainly focused on the relationship between 
the mean invasion speed and the percentage of favorable hab-
itat across the landscape (With and Crist 1995, With 2002, 
Dewhirst and Lutscher 2009), showing that spread may not 
occur below minimal thresholds of suitable growth habitat. A 
limited number of empirical works has measured spread rates 
in heterogeneous and diverse habitats and compared real-
ized spread distances in patchily distributed sites (Bergelson 
et al. 1994, Bailey et al. 2000, Williams et al. 2016a, b) or 
across landscapes with monotonic gradients (Fronhofer et al. 
2017). Spatially heterogeneous landscapes, however, are not 
only characterized by the mean percentage of favorable hab-
itat or the mean density of resources, but crucially also by 
their spatial autocorrelation. Currently, we lack both theo-
retical and experimental studies investigating the role of such 
autocorrelation in driving the spread of species.

In our experiment we manipulated the availability of light 
as a limiting resource with a spatially heterogeneous distri-
bution. Light is the most important resource for photosyn-
thetically active organims, such as higher plants or algae, and 
these organisms are not only using light as their key resource 
for growth, but can also adjust their movement in response 
of light availability (Giometto et al. 2015). Such directional 
movement can be active movement (e.g. in flagellated algae) 
or indirected growth/budding of plant stolones. For most 
plants, especially in forests, the availability of light is spatially 
highly heterogeneous, and mostly driven by gap dynamics 
(Kricher 2011). Thus, gaps due to tree-fall or anthropogenic 
activities create a patchy distribution of light as a key resource 
for understory plants, and all of their associated interacting 
herbivores and pollinators. We were interested in how the 
arrangement, specifically the autocorrelation of the light 
availability, can affect spread dynamics of organisms. While 
we focus on light as a resource, our theoretical work and 
paralleled experiments are more generic with respect to the 
specific resource creating the heterogeneity in habitat quality.

Here, we theoretically and experimentally show that the 
invasion speed is affected not only by the mean amount 
of resources along the landscape (or, analogously, by the 
percentage of suitable habitat), but also by their spatial 

autocorrelation structure. We find that environmental het-
erogeneity and demographic stochasticity jointly affect bio-
logical invasions. In particular, we show that it is necessary 
to include demographic stochasticity in models of spread in 
order to properly understand biological invasions in spatially 
heterogeneous environments. Our investigation is organized 
as follows. We first show theoretically, in two models of inva-
sion at different levels of biological detail, that the speed of 
species spread decreases when the resource autocorrelation 
length increases. Second, we verify such a prediction in a 
microcosm experiment with the flagellated protist Euglena 
gracilis, by manipulating light intensity profiles along linear 
landscapes (light is an energy source for E. gracilis, as it has 
chloroplasts and can photosynthesize). Third, we discuss the 
contribution of each process included in the model to the 
propagation of biological invasions.

Methods

Model

Species spread in heterogeneous linear landscapes is modeled 
via a stochastic generalization of the Fisher–Kolmogorov 
equation including demographic stochasticity (Dornic et al. 
2005, Bonachela et  al. 2012, Giometto et  al. 2014, Villa 
Martín et al. 2015):
∂
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where r(x,t) is the density of individuals, D is the diffusion 
coefficient of the species due to the active movement of 
individuals, r is the growth rate, K is the carrying capacity, 
s is a parameter describing the amplitude of demographic 
stochasticity and h is a gaussian, zero-mean white noise (i.e. 
the noise has correlations 〈h(x,t)h(x′,t′)〉  d(x  x′)d(t  
t′), where d is the Dirac’s delta function). Itô’s stochastic cal-
culus is adopted, as appropriate for the demographic noise 
term (Giometto et  al. 2014). The diffusion term in Eq. 1 
assumes random movement of individuals. The growth rate 
ri  r0I is assumed to be a function of the local amount of 
resources I(x), which can assume two values: I(x)  1 or 
I(x)  0. Landscape heterogeneity is thus embedded in the 
resource profile I(x). We studied the dimensionless form of 
Eq. 1, which reads (Supplementary material Appendix 1):
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cI(x′) is the indicator function of the set of x′ for which 
I(x′)  1. In the following we drop primes for convenience: 
one can recover the original dimensions by multiplying 
t by r0, x by r D0 /  and rescaling r and s as indicated 
above. Numerical integration of stochastic partial differen-
tial equations with square root noise terms require ad hoc 
numerical methods, as standard approaches such as the  
first-order explicit Euler method inevitably produce unphys-
ical negative values for the density r (Dornic et al. 2005). 
Therefore, Eq. 2 was integrated with the split-step method 
proposed in Dornic et al. (2005) (see Supplementary material 
Appendix 1 for details).
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We generated landscapes with various resource autocor-
relation lengths by imposing I(x) to be composed of subse-
quent independent patches of suitable (I(x)  1 and r  r0) 
or unsuitable (I(x)  0 and r  0) habitats (Fig. 1A). The 
length of each patch was drawn from an exponential dis-
tribution with rate m. Therefore, each landscape was a sto-
chastic realization of the so-called telegraph process with 
rate m and autocorrelation length cL = 1 2/( )µ  (Supplemen-
tary material Appendix 1). The mean extent of suitable and 
unsuitable patches in such landscapes is 1/m. Because simu-
lated landscapes were finite, we only accepted landscapes 

with mean resources equal to I L I x dx
L

= ( ) =∫1 1 2
0

/ /  and 

autocorrelation length confined to a narrow window around 
1/(2m). Examples of landscapes used in the simulations are 
shown in Fig. 1A.

We generated 96 landscapes for each value of resource 
autocorrelation length cL and integrated Eq. 2 numerically for 
each landscape and for each value of s ∈ {0.1, 0.2, 0.4, 0.6} 
(Fig. 1B), with initial density profiles localized at the origin. 
A reflective boundary condition at the origin may cause 
the extinction of the whole population, which may happen 

due to demographic stochasticity. Because our investigation 
is only concerned with successful invasions (i.e. invasions 
that survive an initial establishment phase), we fixed the 
left boundary at r  1, which thus represents a continuous 
source of individuals. Such a boundary condition ensures 
that the population does not go extinct in our numerical 
investigation. For each numerical integration, we measured 
the position of the front by fixing a threshold value of the 
density (   0.15) and recording the furthest point from 
the origin where the cell density was higher than such value. 
The mean propagation speed for each value of the resource 
autocorrelation length was computed by fitting a straight line 
(least-squares fit) to the mean front position versus time in 
the asymptotic propagation regime (Supplementary material 
Appendix 1 Fig. A6), before any of the replicated invasions 
reached the end of the landscape.

The traditional way to compute the invasion speed in 
the deterministic Fisher–Kolmogorov equation is to ana-
lyze the traveling wave solutions of the equation. Such pro-
cedure cannot be adopted for Eq. 2, due to the stochastic 
noise term. We derived a theoretical approximation to the 
mean front propagation speed, valid for large autocorrela-
tion length cL and s (Supplementary material Appendix 
1 section 2.1.2), by characterizing the mean time taken to 
cross a patch of unfavorable habitat (where I  r  0) of 
length z. Such mean time is shown (Supplementary material 
Appendix 1) to depend on z and s as τ σ σz Cz ed z b a

, ( )( ) = 2 ,  
where C, a, b and d are constants, independent of z and s. 
Additionally, we characterized the functional dependence of 
the variance of t on z and s and derived an approximation 
to the variance of the total time taken by a front to colonize 
completely a landscape of finite length L (Supplementary 
material Appendix 1). Our approximation is in good agree-
ment with numerical integrations of Eq. 2 (Fig. 1).

To test whether deterministic models predict a slowdown 
of the invading front for increasing resource autocorrela-
tion length, we numerically integrated Eq. 2 with s  0. 
Additionally, we numerically integrated Eq. 2 with s  0 
imposing a negative growth rate r in unfavorable patches 
where I  0 (Supplementary material Appendix 1).

Experiments

We performed experiments with the flagellated protist 
Euglena gracilis, acquired from Carolina Biological Supply 
(NC, USA). A culture of E. gracilis was initialized two weeks 
prior to the start of the experiment and kept at 22°C under 
constant LED light of wavelength 469 nm (emission width 
approximately 10 nm), in a filtered (0.2 mm filter) nutrient 
medium composed of sterilized spring water and protozoan 
pellets at a density of 0.45 g l–1 in a 500 ml Schott flask (for 
details on the experimental system see Altermatt et al. 2015). 
Such a model system has been used successfully in previ-
ous experiments to investigate ecological and evolutionary 
dynamics during range expansions (Giometto et  al. 2014, 
2015, Fronhofer and Altermatt 2015, Seymour et al. 2015, 
Gounand et al. 2017).

In our experiment, light was used as the energy source 
for E. gracilis. To demonstrate that light was crucial for the 
growth of E. gracilis in our experimental setting, we mea-
sured E. gracilis’ growth curves (Fig. 4A) by initializing eight 

0

1
0

1

I(
x)

x

I(
x)

Resource autocorrelation length cL=1/(2µ)

(A)

(B)

σ=0
σ=0.1
σ=0.2
σ=0.4
σ=0.6

0 10 20 30 40 50 60

1

0

–1

–2

–3

–4

–5

–6

lo
g 

v

Figure 1. Mean front propagation in the model (dimensionless  
Eq. 2). (A) Examples of landscapes with different resource auto-
correlation length cL, generated via the telegraph process with  
rate m. (B) The mean invasion speed computed in numerical inte-
grations of the model (Eq. 2) decreases with increasing resource 
autocorrelation length cL (log-linear plot) for s  0 and is a 
decreasing function of the amplitude of demographic stochasticity 
s (different colors according to legend). With s  0 the dynamics 
is deterministic and the mean front propagation speed does not 
decrease with cL (gray dots). Error bars display the 95% confidence 
interval for log(v), computed with 2  103 bootstrap samples. 
Error bars for s  0 are smaller than symbols. Dashed lines show 
the mean front propagation speed computed according to the 
theoretical approximation (Eq. 4).
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sheet inside the plexiglass channel and by measuring the 
irradiance on the sheet with a digital camera operated in 
grayscale. The total radiant flux of the LED was measured 
via a calibrated photodiode. Light intensity profiles with 
the desired autocorrelation length were designed by impos-
ing the probability l of the LED number i  1 in the LED 
array to be switched-on if the LED number i was switched-
off, that is, P[LED(i  1)  ON|LED(i)  OFF]  l. Such 
Markov Chain was imposed to be symmetric, that is, P
[LED(i  1)  OFF|LED(i)  ON]  l. Small and large 
values of l generate resource distributions with long and 
small autocorrelation lengths (approximately equal to  
ΔL/(2l)), respectively. Because landscapes were of finite 
total length, the above procedure could generate by chance 
resource profiles with autocorrelation length different from 
the desired one and with a mean frequency of switched-on 
LEDs different from 1/2. Therefore, the set of resource pro-
files obtained with the above Markov Chain procedure was 
restricted to those with a mean frequency of switched-on 
LEDs equal to 1/2 and in a narrow window of autocorrela-
tion length around the desired one. Therefore, all replicates 

had the same mean light intensity equal to I L I x dx
L

= ( )∫1
0

/ .

We compared two treatments in the experiment. 
Treatment 1 consisted of landscapes with identical small 
autocorrelation length (cL  2 cm) but different switched-
on LED sequences, generated via the Markov chain proce-
dure with l  0.75. Treatment 2 consisted of landscapes 
with identical large autocorrelation length (cL  6 cm) 
but different switched-on LED sequences, generated via 
the Markov chain procedure with l  0.25. The choice of 
the large autocorrelation length value in the experiment 
was limited by the total finite length of the experimen-
tal setup and was chosen to be less than 1/20 of the total 
setup length. We initially had six landscape replicates of 
each treatment, but lost one replicate of treatment 1 due 
to leakage. All 11 landscapes had the same total number 
of switched-on LEDs and the experimental light intensity 

low-density cultures in 10 ml cell culture flasks. Half of such 
cultures were placed on top of two LEDs (for each culture) 
operated at a total flux of 1 mW each. The other half of the 
cultures were placed on top of two LEDs (for each culture) 
operated at the same power, but covered with black tape 
so that no light would penetrate. The spatial arrangement 
of illuminated and non-illuminated cell culture flasks was 
randomized.

Light also affects the movement behavior of E. gracilis 
individuals through a process known as phototaxis, the 
directed movement of cells towards or away from light 
(Drescher et al. 2010, Giometto et al. 2015). Specifically, at 
low to intermediate light intensities, E. gracilis swims towards 
the light source at a time scale much shorter than the typi-
cal generation time. At very high light intensities, negative 
phototaxis can also be observed, and the plastic reaction 
of phototaxis can be induced very reliably (Giometto et al. 
2015). The light intensity value used in our experiments 
is smaller than the light intensity value at which negative 
phototaxis occurs.

The front propagation experiment was performed in 
linear landscapes, which were channels drilled on a plexiglass 
sheet (5 mm wide, 3 mm deep and 1.9 m long, respectively, 
300, 200 and 105 times the size of an individual, Giometto 
et al. 2013), filled with filtered nutrient medium (Fig. 2A). 
A gasket avoided water spillage and a plexiglass lid was used 
to seal the system. The experimental replicates were kept 
in a climatized dark room at 22°C for the whole duration 
of the experiment. Each linear landscape was covered by 
a black cardboard sheet. Heterogeneous distributions of 
resources were generated via linear arrays of LEDs (Fig. 2B) 
controlled via Arduino Uno boards. LEDs in the array were 
separated by a distance of ΔL  3.12 cm from each other 
and could be switched on or off individually. Switched-on 
LEDs emitted light with an intensity of 5.2 W m–2 within 
the plexiglass channel, immediately above the LED. The 
linear landscapes were placed on top of the LED array at 
a distance of 4.5 mm. The light intensity profile gener-
ated by one LED was measured by placing a white paper 
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Figure 2. Experimental setup. (A) Linear landscapes used in the experiments were channels drilled on a plexiglass sheet. A gasket (orange 
rubber band) avoided water spillage. (B) Photograph of the LED strips used to control the distribution of resources for E. gracilis. The red 
and blue lines show the paths of landscapes with large and small resource autocorrelation length, respectively.



1558

ρ   60 cm–1 and in the Supplementary material Appendix 1 
Table A1 for all values of r considered. We did not include 
the first timepoint in the analysis because it was measured 
immediately after the inoculation of E. gracilis in the land-
scape and thus was identical for all replicates. Because the 
propagating front reached the end of the landscape at day 4 
in some replicates, the front propagation analysis was per-
formed only with the data up to day 3 (included) to avoid 
spurious border effects due to the finite size of the system.

Model with directed movement towards resources

Equation 1 does not assume directed movement of indi-
viduals towards resources. This directed movement, how-
ever, occurs in our experiment and is likely to occur in 
nature (Andow et  al. 1990, Börger et  al. 2008, Fronhofer 
et al. 2017). Additionally, the experimental resource distri-
butions (i.e. the light intensity profiles I(x)) were not sim-
ply sequences of illuminated and non-illuminated spatial 
patches with sharp edges, but, rather, smooth light inten-
sity profiles alternating between well-lit and dark regions 
of the landscape according to the spatial arrangement out-
lined above. Because E. gracilis is capable of detecting light 
intensity gradients and moving towards well-lit regions of 
the landscape, this directed movement may affect the inva-
sion dynamics. To assess the net contribution of the directed 

profiles are shown in Fig. 3. The stated values of autocor-
relation length are based on the first-order autocorrelation 
of the Markov chain that generated the landscape. The first 
three LEDs in every landscape were switched-on to allow 
the local establishment of the inoculated E. gracilis popula-
tion and to avoid differences between the two treatments 
in the initial establishment dynamics. Thus, the landscapes 
generated via the Markov chain procedure described in the 
text started at the fourth LED. In treatment 2 (large auto-
correlation length), three landscapes were chosen so that 
the fourth LED was switched on and the other four were 
chosen so that the fourth LED was switched off. In other 
words, the realized Markov chain started from its stationary 
distribution. The spatial arrangement of landscapes belong-
ing to the two treatments on the experimental bench was 
randomized.

At the start of the experiment, we introduced an ensemble 
of E. gracilis individuals at one end of the linear landscapes. 
Following the inoculation, we measured for eight consecu-
tive days the density of E. gracilis throughout all replicates 
by taking pictures with a stereomicroscope equipped with a 
digital camera and counting individuals via image analysis 
(Altermatt et al. 2015).

Statistical analysis

We used a mixed effect model to compare the speed of the 
propagating E. gracilis among the two different treatments. 
Thereby, the autocorrelation treatment was included as a 
fixed effect, while day and replicate were included as ran-
dom effect. We repeated this analysis using different choices 
of threshold values used for determining the front position. 
The minimum and maximum threshold values employed in 
the statistical analysis were chosen such that no replicate 
displayed a retreating front between successive measure-
ments (caused by noise in the density profiles). The test sta-
tistics are reported in Table 1 for the density threshold value 
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Figure 3. Light intensity profiles used in the experiment. One spread experiment was performed for each landscape. The total light intensity 
is the same for each landscape. Landscapes with the same color have identical small (blue) or large (red) autocorrelation length of the 
resource distribution I(x), but different LED on-off sequences.

Table 1. Mixed-effect test statistics testing the speed of front 
propagation, with the autocorrelation length treatment as single 
fixed effect and time/replicate as random effect. The treatment with 
small autocorrelation length had five replicates, the treatment with 
large autocorrelation length had six replicates. The front position 
was measured at the density threshold value ρ   60 cm–1.

Value SE df t-value p-value

Intercept 45.98 3.27 44 14.04 p  10–4

Autocorrelation length –11.61 4.43 9 –2.62 0.0279
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Results

Our generalization of the Fisher–Kolmogorov equation (Eq. 
1 and 2) includes demographic stochasticity and resource het-
erogeneity. Resource heterogeneity affects the spread dynam-
ics through the dependence of the growth rate r on the local 
amount of resources I. We found that the speed of invasion 
in the model Eq. 2 decreases with increasing resource auto-
correlation length (Fig. 1B). The mean front propagation 
speed, in heterogeneous landscapes where resource patch 
lengths are distributed exponentially with rate m, depends 
on cL and s asymptotically (i.e. for large cL and s) as:

v
L

L dz z e

c

dz z eL z

L
z cL

=
( )∫ ∫− −µ τ σ µ τ σµ

2

8

0

2

0

2, ( , ) /( )
 • 	 (4)

Figure 1B shows that Eq. 4 correctly predicts the speed of 
invasion at large values of cL and s. In heterogeneous land-
scapes with different spatial arrangements of favorable and 
unfavorable patches, if the percentage of space occupied 
by unfavorable patches is f0 ∈ (0,1) and the distribution of  
such patches lengths is p0(z), with mean ∫ ( ) =z p z dz0 1/ µ , 
the asymptotic invasion velocity can be approximated as:

v
L

f dz (z, )p z
=

∫µ τ σ0 0

•
( )

	 (5)

We show in the Supplementary material Appendix 1 that  
Eq. 5 correctly predicts the speed of invasion in landscapes 
with percentages of unfavorable habitat different from 
f0  1/2 (Supplementary material Appendix 1 Fig. A5). 
Note that the speed of invasion according to Eq. 4–5 is a 
function of the autocorrelation length if the landscapes con-
sist of favorable and unfavorable patches generated through 
the telegraph process outlined in the Methods section. In 
general, however, the speed of invasion is not a one-to-one 
function of the resource autocorrelation length (or of other 
characteristic length scales of the landscape), but it rather 
depends on the whole distribution of unfavorable patch 
lengths through Eq. 5. The slowdown effect is due to the 
fact that, in the presence of demographic stochasticity, long 
patches of unfavorable habitat act as obstacles for the spread 
of populations. The larger the extent of the unfavorable 
patch, the longer it takes for a population to cross it. The 
front propagation speed is also found to be a monotoni-
cally decreasing function of the amplitude of demographic 
stochasticity (Fig. 1B). Accordingly, integrating the model 
without demographic stochasticity (s  0 in Eq. 2, gray dots 
in Fig. 1B) leads to no discernible slowdown of the front in 
strongly autocorrelated versus weakly autocorrelated land-
scapes, even when imposing negative values of the growth 
rate r in unfavorable patches where I  0 (Supplementary 
material Appendix 1). Such results demonstrate that the 
local extinctions caused by demographic stochasticity in 
unfavorable patches are responsible for the observed front 
slowdown.

Numerical integration of Eq. 2 shows that the variability 
of the front position increases for larger values of cL and s. 
This increased variability is caused by two factors: 1) two 
landscapes with identical resource autocorrelation lengths 
appear increasingly dissimilar for increasing values of the 

movement of individuals towards resources, we incorporated 
in Eq. 1 the model for phototaxis derived in Giometto et al. 
(2015). The phototactic term was inferred from measure-
ments of stationary density distributions of E. gracilis in the 
presence of light gradients (such measurements were per-
formed with the same experimental system adopted here) 
and was shown to reproduce the accumulation dynamics of 
E. gracilis populations accurately in Giometto et al. (2015). 
The model equation reads:
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where ϕ φ0= − +( )/( )I I I IC r  is the phototactic poten-
tial describing E. gracilis’ attraction towards (or against) 
light (Giometto et al. 2015). The parameters describing f 
were estimated (Giometto et al. 2015) and were set equal 
to f0  1.4  108  m4 W–1 s–1, Ir  1.7 W m–2 and IC   
28 W m–2. We assumed that r follows Monod kinetics (the 
assumption is customary for phytoplankton, Diehl 2002), 
that is, r(I)  r1 I/(I  KI), where KI is the half-saturation 
constant. The model (Eq. 3) was integrated with parameters 
suitable to describe the experimental system, r1  6 × 10–3 
min–1, KI  1 W m–2, K  300 cm–1, D  0.08 cm2 min–1 
(estimated in Giometto et  al. 2015), various values of s 
(Supplementary materiual Appendix 1 Fig. A8) and ini-
tial condition localized at the origin. See Supplementary 
material Appendix 1 for details on the numerical integra-
tion scheme adopted. The slowdown effect caused by the 
resource autocorrelation structure is also found with other 
choices of the growth rate dependence on the resource den-
sity. In fact, we found that results do not change qualita-
tively by assuming a linear dependence of r on I. We used 
Eq. 3 to simulate biological invasions in linear landscapes 
with resource distributions I(x) exhibiting various autocor-
relation lengths. To mimic the experimental setup (Fig. 3),  
numerical landscapes were generated with the same 
Markov-chain procedure used to design the experimental 
landscapes, where the light intensity profile generated by 
a single LED (centered in x  0) was assumed equal to the 
best fit of the equation I x c c x( ) /( )= +0 1

2 2 2  to the measured 
light intensity profile (see Fig. S1 of Giometto et al. 2015). 
The total light intensity was kept constant for all landscapes. 
To further mimic the experiment, we set reflecting bound-
ary conditions for the integration of Eq. 3 and simulations 
in which the population went extinct were excluded from  
the analysis. Therefore, the model Eq. 3 was specifically 
derived to reproduce as closely as possible the experimen-
tal system at hand. Landscapes used in the simulations 
were much longer (18 m) than those used in the experi-
ment in order to avoid border effects. Such numerical set-
tings allowed a clear identification of the invasion front and 
allowed simulating species spread in landscapes with very 
large autocorrelation length, which could not be investigated 
experimentally because of the finite size of the experimental 
setup.

Data deposition

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.51mq6 > (Giometto et al. 2017).
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the advection term shows that the biased local movement 
towards resources causes an increased slowdown of the inva-
sion front in strongly (compared to weakly) autocorrelated 
landscapes (Supplementary material Appendix 1 Fig. A8). In 
other words, the biased movement towards resources acts as 
a spring that keeps the population in favorable patches and 
works against the exploration of unfavorable ones. Exclud-
ing demographic stochasticity from the model Eq. 3 leads 
again to the elimination of the slowdown effect (inset of 
Supplementary material Appendix 1 Fig. A8).

In the subsequent experiment with E. gracilis, we observed 
a steady front propagation across all landscapes with a mean 
front propagation speed of 54  9 cm day–1 (mean  SD). 
The mean total number of individuals was 2420  110 (mean 
 SE) at the start of the experiment (day 0), 15 000  800 
(mean  SE) at the end of the front propagation phase (day 
4) and 27 000  4500 (mean  SE) at the end of the experi-
ment (day 8). Thus, the invasion process was a combination 
of active, directed movement of individuals as well as repro-
duction. We found a significantly slower front propagation 

typical patch length 1/m; 2) the variance of the distribution 
of waiting times (i.e. the times to cross an unfavorable patch 
of length z) increases (approximately) quadratically with the 
mean time 〈t〉(z,s) (Fig. 3). These two observations can be 
used to approximate the fluctuations of the total time spent 
by the front colonizing a landscape of length L, as shown in 
the Supplementary material Appendix 1.

The model (Eq. 1, 2) assumes random local movement of 
individuals. Although such an assumption may be appropri-
ate to describe spread in homogeneous landscapes (Andow 
et al. 1990, Giometto et al. 2014), individuals might be able 
to exploit local information on the availability of resources 
to direct their movement towards more favorable regions 
(Andow et al. 1990, Fronhofer et al. 2015). We studied the 
effect of biased movement towards resources by including 
an advection term (towards regions endowed with more 
resources) in Eq. 1, leading to Eq. 3. The latter model predicts 
again that the front propagation speed decreases for increas-
ing resource autocorrelation length, in accordance with the 
former model (Eq. 1). Integrating Eq. 3 with and without 
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Figure 4. Experimental spread in autocorrelated landscapes. (A) Light was used as energy resource for E. gracilis. Replicated measured 
growth curves show that E. gracilis grows in the presence of light (blue symbols and lines) and does not grow in its absence (black symbols 
and lines). (B) Replicated measurements (gray lines) of E. gracilis density profiles (normalized by the value at the edge of the imaging 
window) in the presence of a LED at x  0 cm show that E. gracilis populations accumulate around light sources through phototaxis. The 
blue line denotes the mean density profile across replicates (panel B is redrawn from Giometto et al. 2015). (C) Mean ( SE) position of 
the front, calculated among replicates with identical large (red) or small (blue) resource autocorrelation length at the threshold density value 
ρ   60 cm–1. The inset shows mean front positions calculated at different threshold density values ρ  as indicated. The slowdown effect is 
significant with all choices of ρ  (Table 1).
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importance of including demographic stochasticity in the-
oretical models because of the many facets through which 
it affects species spread (Hallatschek and Korolev 2009, 
Giometto et  al. 2014) and ecological dynamics in hetero-
geneous landscapes (Villa Martín et al. 2015). The implica-
tions of the above results challenge the standard approach 
as stochastic effects are neglected by deterministic, Fisher–
Kolmogorov-like models. Because the slowdown effect is 
only observed when demographic stochasticity is included 
in the models, our theoretical investigation suggests that the 
stochastic birth-and-death dynamics are the main drivers of 
the observed reduction in propagation speed, rather than the 
movement behavior of individuals in heterogeneous land-
scapes that has received so far most attention in the literature 
(Van Dyck and Baguette 2005, Börger et al. 2008). Previ-
ous studies have investigated the minimum percentage of 
suitable habitat that allows invasions to spread (With and 
Crist 1995, With 2002, Dewhirst and Lutscher 2009), sug-
gesting that invasions cannot propagate in landscapes with 
mean resource density below a critical threshold. Our work 
shows, complementarily, that the spatial arrangement of 
resources affects species spread even if the total amount of 
available resources is kept constant. Thus, it is not only the 
mean resource density that matters for the front propagation 
dynamics, because the autocorrelation structure of landscape 
heterogeneity alone also affects species spread. In general, the 
larger the patch of unfavorable landscape, the longer it will 
take for the invading front to overcome it. Such a longer 
time is caused by the fact that a population cannot have net 
growth (on average) in an unfavorable patch, and is prone to 
local extinction due to demographic stochasticity. For large 
values of autocorrelation length, the mean speed of invasion 
is mainly determined by the time spent by the front trying 
to overcome long stretches of unfavorable landscape. In this 
limit, the mean speed of invasion is mainly determined by 
the distribution of unfavorable patches lengths, as captured 
by Eq. 4.

Our investigation also extends previous works that 
addressed the effect of temporal environmental fluctuations 
on species spread (Méndez et al. 2011, Ellner and Schreiber 
2012) by showing that the autocorrelation length of the 
resource distribution should be added to the environmen-
tal factors that can slow species spread, along with temporal 
fluctuations of vital rates (Neubert et  al. 2000, Ellner and 
Schreiber 2012), geometrical heterogeneities of the substrate 
(Méndez et al. 2003, 2004, Bertuzzo et al. 2007) and demo-
graphic stochasticity (Hallatschek and Korolev 2009). We 
note that our model does not account for Allee effects that 
may characterize the growth dynamics of a natural popu-
lation, for example due to mate limitation. We anticipate 
that strong Allee effects (i.e. a negative growth rate at small 
population densities) might cause a reduction in the front 
propagation speed analogous to the one investigated here, 
caused by demographic stochasticity. In fact, the origin of 
such a slowdown effect lies in the local extinction of low-
density populations that are able to diffuse through long 
stretches of unfavorable landscape. Such an extinction may 
be caused by either demographic stochasticity or by a strong 
Allee effect. Because our study species does not exhibit a 
noticeable Allee effect, we have not investigated its dynamics 
in this investigation.

in landscapes in which the resources were strongly spatially 
autocorrelated (mixed effect model p  0.027, see also Table 
1). The result is robust to changes of the threshold value 
at which the front position is evaluated (Table 1, Fig. 4C, 
Supplementary material Appendix 1 Fig. A9). The slow-
down effect is visible in Fig. 4C, which shows the mean front 
position across replicated invasions in the two treatments.

Discussion

Our theoretical and experimental investigation highlights a 
yet unrecognized slowdown of biological invasions in het-
erogeneous landscapes with different resource autocorrela-
tion lengths, which we then corroborated in experimental 
microcosms specifically designed to single out the effect 
of resource autocorrelation length on invasion speed. In 
the experiments, the demographic and movement traits of  
the study species were fixed and were inherent properties 
of the species. The accompanying models allowed to single 
out the individual role and the mutual interconnections of 
all processes included in the equations to the propagation 
dynamics in landscapes with different resource autocorrela-
tion lengths.

Our model implicitly assumes that regions of the land-
scape with positive growth rate r  0 can sustain a popula-
tion of density K indefinitely. One could envision a more 
general scheme in which the spatial density of nutrients is 
fixed and finite at the start of the invasion and declines in 
time due to uptake by individuals. Investigation of such a 
model would allow us to test whether invasions in hetero-
geneous landscapes can proceed indefinitely and/or what is 
the probability that a population can overcome unfavorable 
patches of fixed length before becoming extinct due to the 
consumption of all the nutrients available in the colonized 
region of the landscape. In our experiments, we used light as 
the main energy source, which could be continuously pro-
vided at a fixed intensity. A natural analogue of this setting 
may be found in forest gap dynamics which are characterized 
by the low/high light availability in understory plant com-
munities, or in aquatic systems differentially shaded by ripar-
ian vegetation. Note, however, that other nutrients in the 
medium provided the limiting resources which prevented 
the population from growing indefinitely. Because we did 
not observe the extinction of our experimental populations, 
we believe that a generalized model accounting for nutrient 
depletion behind the front goes beyond the scopes of this 
investigation, and would not affect our main conclusion.

Our theoretical and experimental study advances our 
current understanding of the spread of invading organisms 
in heterogeneous landscapes by addressing the joint effect 
of spatial environmental autocorrelation and demographic 
stochasticity on the spread dynamics. As arguably all natural 
landscapes are characterized by heterogeneous distributions 
of resources and all populations are subject to demographic 
stochasticity, our model incorporates two key elements 
(resource heterogeneity and demographic stochasticity) hith-
erto often overlooked in the modeling of biological spread.

A major result of our work is that demographic stochas-
ticity is a key factor in the slowdown of front propagation 
in heterogeneous landscapes. Our finding highlights the 
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et  al. (2008) performed an in-depth analysis of the effect 
of environmental heterogeneity on the spread of the cane 
toad in the field and found a statistically significant effect 
of environmental heterogeneity and, most importantly, of 
the spatial autocorrelation of environmental variables on the 
realized patterns of invasion speed. They found such effect 
in nature in a realized (not replicable) invasion, and thus 
they could only correlate the realized spread dynamics and 
its reduction with the landscape autocorrelation. Here, we 
have given a mathematical framework and an experimental 
proof showing that the slowdown effect caused by the spatial 
autocorrelation structure of the landscape is not an artifact 
of the mathematical model.

Conclusion

In conclusion, our work demonstrates the need to account 
for the intrinsic stochasticity of population dynamics to 
broaden our understanding of ecological processes occur-
ring in spatially extended natural landscapes, which typi-
cally display various degrees of heterogeneity. Further work 
should be dedicated to the modeling and experimentation 
of species spread in temporally varying landscapes and, pos-
sibly, spatially heterogeneous landscapes that fluctuate in 
time. Drawing from the literature on population dynam-
ics in temporally fluctuating environments, understanding 
the causal link between the autocorrelation structure of 
fluctuations and the dynamics of species spread is a promising 
direction for future research in this area.
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