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ABSTRACT

Aim Globally, the geographical distributions of species are dynamic and

strongly influenced by dispersal. At the same time, range dynamics feed back

and may select for increased dispersal at expanding range fronts. This interplay

between macroecological and evolutionary dynamics happens almost

universally across environmental gradients and such gradients can have a direct

impact on the fitness of organisms due to the match or mismatch between an

individual’s environmental optimum and the current conditions along the

gradient. Importantly, gradients also provide individuals with information on

environmental changes because dispersing individuals may sense whether

environmental conditions improve or deteriorate. However, the ability of

organisms to use this information on the environment and to subsequently

adjust dispersal decisions plastically, that is, deciding to further disperse into

the gradient or not, has been largely ignored and the macroecological

consequences remain unclear. We here aim to demonstrate the impact of

informed dispersal on the eco-evolutionary dynamics of ranges.

Location Laboratory and theoretical.

Methods We used individual-based simulations and controlled experiments in

replicated microcosm landscapes. Range expansions of the protist model

organism Tetrahymena were tracked using video recording and analysis.

Results We show that information on environmental gradients had a severe

impact on range dynamics and inverted the spatial distribution of population

densities in comparison with controls where this information was not

provided. Additionally, the use of information on gradients prevented

evolutionary changes in dispersal rates and an acceleration of range expansion.

Main conclusions We demonstrate the strong impact of informed dispersal

and subsequent behavioural changes on range dynamics in environmental

gradients. More generally, our findings highlight the importance of informed

dispersal for spatial ecological and evolutionary dynamics.

Keywords
biological invasion, dispersal, environmental gradient, experimental evolu-

tion, information use, range expansion.

INTRODUCTION

The capacity of organisms to spread in space and to expand

their range into new habitats is crucial for their long-term

fitness, especially in the context of current global

environmental and climatic changes (Hill et al., 1999; Parme-

san et al., 1999; Parmesan & Yohe, 2003; Kelly & Goulden,

2008). The fundamental and applied relevance of range

expansions and biological invasions has given rise to
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extensive theoretical work predicting range dynamics (Hast-

ings et al., 2005; Holt et al., 2005; Burton et al., 2010;

Dytham, 2009; Holt & Barfield, 2011; Perkins et al., 2013;

Williams et al., 2016b). To date, however, our empirical

understanding of range dynamics is mostly based on case

studies of range shifts and invasions, with little experimental

validation or manipulation (e.g. Thomas et al., 2001; Phillips

et al., 2006; Lombaert et al., 2014). The few studies that have

experimentally tracked replicated range expansions are either

limited by the short time frames considered (Melbourne &

Hastings, 2009; Giometto et al., 2014), preventing potentially

important evolutionary changes from occurring, or by the

unrealistic assumption that range expansions occur into uni-

form habitat (Fronhofer & Altermatt, 2015; Williams et al.,

2016a).

Realistically, all range expansions are limited by the hetero-

geneity of landscapes and universal gradients in environmen-

tal conditions, such as temperature or humidity. The

importance of gradients as such for species ranges has been

explored previously: gradients may, for instance, affect the

evolution of dispersal (Kubisch et al., 2014) and lead to sta-

ble range borders and even range contractions after the

expansion phase (Kubisch et al., 2010, 2016). Furthermore,

gradients are often associated with the distribution of popu-

lation densities throughout the range (Sagarin et al., 2006;

Sexton et al., 2009) and the relevance of species interactions

for range dynamics is hypothesized to be tightly linked to the

harshness of environmental gradients (Louthan et al., 2015).

However, these works usually fail to consider that environ-

mental gradients have a two-fold effect on organisms: Firstly,

gradients have a direct, fitness-relevant effect due to the mis-

match between local conditions and the environmental opti-

mum of individuals. Secondly, gradients have indirect effects

mediated by the information that the gradient conveys to

dispersing organisms. Dispersers may be able to sample

information on the environmental gradient, relate it to their

level of (mal)adaptation to local conditions and finally make

informed decisions on whether to disperse further into the

gradient or not. If we take the example of a temperature gra-

dient, dispersing individuals may be able to sense differences

in temperature between patches as they move through the

landscape and decide not to disperse further into the gradi-

ent, or even to disperse backwards. While the relevance of

information use for making dispersal decisions and subse-

quent consequences for spatial dynamics has been recognized

in general (Clobert et al., 2009), the consequences of

informed dispersal for macroecological dynamics remain

under-appreciated.

Here, we theoretically and experimentally test the role of

environmental gradients in the dynamics of range expansions

considering the two-fold effect of environmental gradients

discussed above. We use an individual-based model to pre-

dict ecological and evolutionary dynamics in three range

expansion scenarios. Firstly (‘control’), we model the range

expansion of individuals into a previously empty linear

landscape of interconnected patches. Secondly, we include an

analogous scenario, but where the landscape has a linearly

increasing gradient of local mortality that affects the fitness

of the spreading organisms without providing information

on the spatial change in mortality (‘gradient’). Finally, we

contrast these two scenarios with a range expansion into a

mortality gradient that provides information on the changes

in mortality, and individuals use this information to plasti-

cally take optimal dispersal decisions (‘gradient and

information’).

We tested our theoretical predictions using experimental

evolution and replicated linear microcosm landscapes, which

were invaded by the ciliate model organism Tetrahymena

pyriformis (Altermatt et al., 2015). The landscapes allowed

for active dispersal and included the three scenarios detailed

above (control, gradient, and gradient and information).

Our results show that range expansions in the control sce-

nario led to the evolution of increased dispersal at the range

front (see also Phillips et al., 2006; Fronhofer & Altermatt,

2015; Williams et al., 2016a). In our theoretical model, the

mortality gradient in the second scenario led to a reduction

in the speed of range expansion and, ultimately, to the estab-

lishment of a stable range border. Experimentally, we

observed the evolution of increased reproductive rates at the

range front which cancelled the effect of the mortality gradi-

ent to some degree. Finally, the availability of information

allowed organisms to make informed and plastic dispersal

decisions and thereby to avoid dispersal into areas character-

ized by local mortalities that were too high.

MATERIALS AND METHODS

Numerical analyses

General overview

We developed a stochastic, individual-based simulation

model (Burton et al., 2010; Kubisch et al., 2014; Fronhofer &

Altermatt, 2015) that tracks (1) ecological dynamics, such as

spatial spread in a linear landscape, population densities and

dispersal events, and (2) evolutionary changes, more specifi-

cally the evolution of dispersal and the concurrent evolution

of reproductive and competitive ability. In each replicate lin-

ear landscape, populations are initialized at one end of the

landscape and individuals may subsequently spread following

a stepping-stone model (nearest-neighbour dispersal).

We assume local competition for resources and, for sim-

plicity, non-overlapping generations. As a result of standing

genetic variation present at the beginning and of subsequent

mutations, the distribution of traits in a population may

shift, leading to evolutionary changes in dispersal. Since it is

well known that dispersal is costly (Bonte et al., 2012), we

assume that more dispersive individuals reproduce less due

to their investment of energy in dispersal (Fronhofer &

Altermatt, 2015; dispersal–fecundity trade-off; equation (3)).

Furthermore, reproduction and competitive ability are posi-

tively correlated (equation (2)) due to underlying consumer–
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resource dynamics (Matessi & Gatto, 1984; a detailed deriva-

tion is given in Appendix S1 in the Supporting Information).

In addition to a control scenario (scenario 1), in which a

range expansion occurs into a previously empty landscape,

we implemented scenarios that include linearly increasing

spatial gradients in local mortality (scenarios 2 and 3). We

contrast a setting in which dispersal propensity may evolve

and the organisms do not have the capacity to sense the

environmental change in such a gradient (scenario 2) and a

scenario in which we assume that individuals have perfect

information to make an optimal dispersal decision plastically

and therefore evolutionary changes become irrelevant (sce-

nario 3). Informed dispersal is based on a cost–benefit analy-

sis, which takes into account population densities (i.e.

competition) in the patch of origin and in all potential target

patches, as well as the effect of the mortality gradient.

The model was designed to be as simple as possible and to

provide qualitative predictions on the impact of environmen-

tal gradients and information use on the ecological and evo-

lutionary dynamics of range expansions. We therefore ran an

extensive sensitivity analysis (Figs. S6–S10). We neither

parameterize nor fit the model to the experimental data.

Landscape and the environmental gradient

For simplicity, we assume a linear landscape of 100 intercon-

nected patches. At the start of each replicate simulation only

the first five patches are populated. The landscape allows

individuals to disperse following a stepping-stone model,

that is, we assume nearest-neighbour dispersal with reflecting

boundary conditions at both ends of the landscape. In sce-

narios 2 and 3, which include an environmental mortality

gradient, we assume that this additional source of local mor-

tality (lx) acts after reproduction and density regulation (see

below) and before dispersal. The mortality gradient is linear

and increases from l1 5 0 in the first patch to l100 5 1 in the

last patch.

Dispersal

Besides being governed by the landscape setting as described

above, dispersal of individuals is assumed to be either geneti-

cally controlled (scenarios 1 and 2) or fully plastic and

informed (scenario 3). Here we only describe the former two

scenarios, the latter will be dealt with in detail below. The

probability of dispersing, more specifically emigrating from a

natal patch, is genetically controlled by a haploid locus that

codes for the dispersal rate (di). When an individual (i) dis-

perses according to its specific dispersal rate, the direction in

the linear landscape (i.e. towards the range core or towards

the range front) is drawn randomly.

We do not assume explicit dispersal costs (Bonte et al.,

2012). However, dispersal is implicitly costly, as we assume

that dispersal trades off with reproduction and competitive

ability as described below.

Reproduction and density regulation

Reproduction occurs after dispersal and follows a modified

logistic, density-dependent growth model based on Beverton

& Holt (1957). As reproductive (ki) and competitive ability

(ai) are individual-based traits, the mean number of off-

spring (Ki) an individual produces in patch x at time t with

a population of size Nx,t is

Ki5ki

1

11
Xj5Nx;t

j51

aj

: (1)

We include demographic stochasticity by assuming that

reproduction follows a Poisson process and drawing the real-

ized number of offspring for individual i from a Poisson dis-

tribution with mean Ki. After reproduction all individuals of

the previous generation die.

Trait correlations and trade-offs

As outlined in Appendix S1, we assume that reproductive

and competitive ability (ki and ai, respectively) are

individual-based traits that are positively correlated:

ai5a0k
q
i (2)

with a0 the baseline competitive ability and q the correlation

exponent between competitive and reproductive ability. As

Fronhofer & Altermatt (2015) showed previously, to a large

part the changes in competitive ability seem driven by chang-

ing feeding rates and not by changing assimilation coeffi-

cients. We therefore assume q 5 2 as a standard scenario

following the logic outlined in Appendix S1. For a summary

of parameters and tested values see Table S1.

Furthermore, we assume that dispersal is costly (Bonte

et al., 2012) and trades off with reproduction, and, therefore,

also with competitive ability:

ki5k0edis (3)

where k0 is the baseline fecundity, di the dispersal rate of

individual i and s the strength of the trade-off between dis-

persal and fecundity.

Information use

In scenario 3 we assume that dispersal is plastic, in the sense

that individuals make informed dispersal decisions. The deci-

sion of whether to disperse to one of the two neighbouring

patches in the linear landscape or to stay in the natal patch

is based on a cost–benefit calculation. We assume that indi-

viduals have perfect knowledge on the population densities

in their natal patch (Nx,t) and in the potential target patches,

as well as information on local mortality (lx) due to the

mortality gradient. Individuals disperse to the patch x that

maximizes their fitness according to equation (1):

E. A. Fronhofer et al.
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Ki;x5ki

1

11
Xj5Nx;t

j51

aj

ð12lxÞ (4)

This approach only accounts for direct fitness benefits and

ignores inclusive fitness (Hamilton & May, 1977). Our simu-

lations therefore underestimate rates of dispersal and spatial

spread in the informed scenario. For a detailed treatment of

the effect of kin competition on range dynamics see Kubisch

et al. (2013).

Evolution and the genetic algorithm

Evolutionary dynamics are an emergent phenomenon of any

individual-based model that allows for variation in heritable,

individual-based traits. The specific simulation scenario leads

to selection pressures, such as spatial selection (Phillips et al.,

2010; Shine et al., 2011) in range expansion scenarios for

instance. We here assume that the dispersal rate (di) is herit-

able and passed on from parent to offspring with a mutation

rate m 5 0.001 that leads to a random change of the trait

value drawn from a Gaussian distribution with mean zero and

standard deviation Dm 5 0.1. Only the dispersal trait is inher-

ited since both other traits, fecundity (ki) and competitive

ability (ai), depend on dispersal via the trade-off and correla-

tion structures explained above (equations (2) and (3)).

At the genotype level we do not implement any boundary

conditions on the dispersal trait, that is, depending on muta-

tions di may be negative or greater than one. At the phenotype

level values of less than zero are set to zero and values of

greater than one are set to one. These phenotypic values are

also used to calculate fecundity according to equation (3).

Simulation experiments

All simulations were initialized with populations at a baseline

equilibrium density, ðk021Þ=a0, in the first five patches in

order to allow the individuals to subsequently spread

through the landscape. Individuals in these populations were

initialized with random dispersal rates (0 � di � 1) as stand-

ing genetic variation. All simulations were allowed to proceed

for 95 generations which, given the stepping-stone dispersal

model, is the minimum time span needed to reach the oppo-

site end of the landscape. In general, simulations were repli-

cated 20 times. The sensitivity analysis of scenario 3

(gradient and information) was performed on fewer repli-

cates (between one and ten) as these simulations show only

very little variation between replicates (see Fig. 1e) and take

an excessive amount of time to run (See Table S1 for the

parameter combinations tested and Figs. S6–S10 for a sensi-

tivity analysis).

Microcosm experiments

Study organism

We used T. pyriformis, a unicellular freshwater ciliate, as a

model organism (Altermatt et al., 2015; Fronhofer &

Altermatt, 2015). Tetrahymena pyriformis is small (c. 40–50

lm along the major axis), has a relatively short doubling

time (c. 4–5 h) and reaches high densities (equilibrium den-

sities of 5000–15,000 individuals ml21) which makes it well

suited for ecological and evolutionary experiments (Altermatt

et al., 2015). We kept T. pyriformis under controlled environ-

mental conditions at 20 8C in protist pellet medium (0.46 g

l21; Carolina Biological Supply) with bacteria (5 vol% of

standardized 7-day-old cultures of Serratia fonticola, Breviba-

cillus brevis and Bacillus subtilis) as food resources. We used

the same protist cultures as Fronhofer & Altermatt (2015)

and therefore started evolution experiments with standing

genetic variation. The cultures were originally obtained from

Carolina Biological Supply and regularly restocked to con-

serve genetic variation (Cadotte, 2007).

Microcosm landscapes

The range expansion experiments were performed in linear

landscapes consisting of 14 interconnected microcosms

(patches). We used 20-ml vials (Sarstedt), connected them

with silicone tubing (VWR; 4 mm inside diameter) and a

stopcock (B. Braun, Discofix) to regulate dispersal (the

length of the tubing and stopcock was 6 cm). All experiments

were replicated six times in two experimental blocks of three

replicates each separated by 1 day.

Scenarios and experimental procedure

At the beginning of each experiment, the first patch of a

landscape was filled with a 1-week-old T. pyriformis culture

that had reached its equilibrium density. Subsequently, the

stopcocks were opened and dispersal was allowed for 4 h. In

order to avoid aging of the medium and to limit contamina-

tion, the landscape was not completely filled with medium

from the start of the experiment but empty patches were

added subsequently to the landscape front. At the beginning

of the experiment, 3 of the 14 patches were filled. At each

day of the experiment, one additional patch filled with

freshly bacterized medium (5 vol%) was added at the front.

Since all patches between the range core and range front

were connected, dispersal could potentially occur across mul-

tiple patches and towards the range front as well as towards

the range core.

To analyse the influence of information use on the eco-

evolutionary dynamics of range expansions into environmen-

tal gradients, we designed two experimental treatments in

addition to the control treatment (scenario 1) described

above. For both uninformed (scenario 2) and informed sce-

narios (scenario 3), a linear mortality gradient was applied,

ranging from 0% mortality in the first patch to 100% mor-

tality in the last patch. In the uninformed scenario (scenario

2), depending on the mortality gradient, a certain volume of

the microcosm was removed, discarded and replaced with

bacterized medium. In the informed scenario (scenario 3),

we followed the same procedure but replaced the volume

with dead T. pyriformis from a 4-day-old culture that was

killed by ultrasonication (duration 4 min, amplitude 40%,

Informed dispersal and range dynamics

Global Ecology and Biogeography, 26, 400–411, VC 2016 John Wiley & Sons Ltd 403



pulse on 2 s, pulse off 1 s; all in an ice bath to avoid heat-

ing). We therefore used dead T. pyriformis and their chemical

cues to inform the protists in the experiments about the

increasing mortality in the landscape. Prior to the experi-

mental evolution assays we performed chemical orientation

assays to confirm that dead conspecifics are indeed used as a

negative tactic cue (see Appendix S2).

The general experimental procedure was as follows: we

first applied the respective treatments (scenario 1, control;

scenario 2, mortality gradient; scenario 3, mortality gradient

and information) and allowed for dispersal (4 h) on one day.

The following day we allowed for regrowth. We therefore had

discrete dispersal and growth phases in analogy to the

individual-based model described above. In total, the evolu-

tion experiment took 26 days with 13 dispersal events and

subsequently 2 days of common garden. Each scenario was

replicated six times and the experimental units were arranged

in two blocks of three replicates each shifted by one day due

to the large number of samples that had to be processed.

Common garden, growth curves and fitness estimation

In order to tease apart plastic changes, due to environmental

or parental effects, in dispersal (respectively, movement strat-

egies), growth rates and competitive abilities from genetically
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Figure 1 Range dynamics – theoretical predictions. (a), (b) Expansion into a homogeneous environment (control). Population densities

increase from the range core to the range front due to dispersal–fecundity trade-offs (equation (3)) and fecundity–competition

correlations (equation (2)). Spatial selection leads to increased dispersal at range fronts. (c), (d) Expansion into a mortality gradient.

Density patterns are not fundamentally altered during a major part of the expansion (see also Fig. S3). However, increasing mortality

locally reduces population densities and selects against dispersal. (e), (f) Expansion in a mortality gradient and information use.

Dispersal is plastic and individuals are fully informed about the mortality gradient, population densities in their natal and potential

target patches (equation (4)). The distribution of population densities over space is inverted (Fig. S3). Dispersal does not evolve, but it

is predicted to be plastically higher at the range front during the expansion due to the decision rule. Temporal snapshots: t 5 [10, 30,

50, 70, 90]. Parameter settings: k0514; a050:00001, q 5 2, s 5 2. We report medians over 20 replicate simulations [solid line; blue

(range core) to red (range front)] and the 25th and 75th percentiles (grey shading; darker with time).
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or non-genetically inherited evolutionary changes, we trans-

ferred range core and range front populations to a common

environment after the experimental evolution phase. We

transferred all core and front populations from the end of

the experiment to 200-ml Erlenmeyer flasks and added

100 ml of freshly bacterized medium to the 15 ml from the

experimental microcosms. This transfer reset all populations

to roughly the same environmental conditions in terms of

resource availability and chemical composition of the

medium. After 2 days in this common environment, all pop-

ulations were assessed for divergence in movement behaviour,

growth rates and competitive abilities.

Growth rates and competitive abilities were estimated by

performing growth curve experiments and subsequently fit-

ting logistic growth curves (equation (S2)) to the time-series

data. All growth curves were started with c. 500 individuals

ml21 by diluting the populations from the common garden.

As resources, 5 vol% bacteria from a standardized 7-day-old

culture were added. The growth of each population was fol-

lowed for 10 days using video recording and analysis as

described below.

Logistic growth curves were fitted to the individual repli-

cates using a least-squares approach. Equation (S2) was

solved (function ‘ode’ of the ‘deSolve’ package in R version

3.2.3) and the model was fitted using the Levenberg–Mar-

quardt algorithm (function ‘nls.lm’ of the ‘minpack.lm’ pack-

age) which minimizes the sum of squared residuals.

Data collection

Before a treatment was performed, a 0.5-ml sample of each

patch was collected. In the control and uninformed scenario,

the sampling volume was replaced with fresh, bacterized

medium. In the informed scenario, the sampling volume was

replaced with dead T. pyriformis and fresh, bacterized

medium for the first patch, respectively.

A subsample was then used for video recording with a

Leica M205 C stereomicroscope (16-fold magnification) and

a Hamamatsu Orca Flash 4 video camera (imaged volume

34.4 ll; sample height: 0.5 mm). Videos of 20-s duration

were recorded with a total of 500 grey-scale images with a

resolution of 2024 3 2024 pixels.

The general method of automated image analysis was

introduced by Pennekamp & Schtickzelle (2013) and Penne-

kamp et al. (2015) and has been successfully used in previous

experiments (Giometto et al., 2014; Fronhofer et al., 2015a,b;

Fronhofer & Altermatt, 2015). The aim is to collect abun-

dance data as well as morphological and behavioural data

simultaneously and provide information at the individual

level. The principle of automated image analysis first includes

a cleaning step followed by different analytical steps to deter-

mine morphological traits (length, size), abundance and

movement data (velocity, turning angle, Euclidean distance).

The first step of the image analysis consists in identifying the

objects of interest by segmenting the moving foreground

from the static background. Therefore the difference between

picture t and t 1 1 was analysed. In general, only particles

with a size between 20 and 200 pixels and a minimal path

length of 100 frames were included in the analysis. Trajecto-

ries of each individual were analysed with the ImageJ

MOSAIC plugin (Sbalzarini & Koumoutsakos, 2005). Data

for each sample (abundance, velocity, body size, turning

angle) were saved as mean values. As previous work consis-

tently showed that dispersal rates and movement behaviour

correlate highly in these protist microcosms (Fronhofer &

Altermatt, 2015; Fronhofer et al., 2015a), we here use move-

ment as a proxy for dispersal. Data can be downloaded from

Dryad doi: 10.5061/dryad.113v9.

Statistical analysis

Differences in velocity were analysed using linear mixed

models (LMMs). We included the experimental block (repli-

cates 1–3 and 4–6) as a random effect in our analyses. We

used a Gaussian error structure because the Q–Q plots indi-

cated that this assumption was not heavily violated. All anal-

yses were performed at the population level, i.e. on mean

parameters over all individuals in a sample. This approach is

very conservative, since it significantly reduces the sample

size given the high population densities and the individual-

based data collected by video recording and analysis. These

analyses were performed using R version 3.2.3 and the

‘lmerTest’ package.

The distribution of population densities over space was

compared between treatments using the empirical cumulative

population density distributions (see Fig. S3d–f). Again, we

chose a very conservative approach and only compared the

median cumulative density distributions of the treatments

using the Cramer–von Mises (CvM) statistic (x2) for two

samples. We therefore calculated the sum of the squared dif-

ferences between two empirical cumulative density distribu-

tions (x2). We subsequently analysed significance levels by

resampling (one-sided tests) and additionally provide proba-

bility–probability plots for visual analysis (Fig. S4). As we

performed all pairwise comparisons (two comparisons per

treatment), we corrected the obtained significance thresholds

using the Bonferroni method, which consists of multiplying

the initially obtained significance thresholds with the number

of comparisons.

The chemical orientation assay was analysed using general-

ized linear mixed models (GLMMs) with binomial error dis-

tributions and counts of individuals choosing either the

treatment or the control patch. We included ‘replicate’ as a

random effect to take into account the pairing between dis-

persal to control and to treatment patches within one repli-

cate. We further included a sample-level random effect to

account for overdispersion.

The empirical correlation between competition coefficients

(a) and growth rates (r0) for populations from the range

core and the range margin was analysed using nonlinear

regressions (following equation (2)) for grouped data with

the function ‘nlsList’ of the ‘nlme’ package in R version 3.2.3.

For this analysis, we only used data from scenarios 1 and 2

as we did not observe evolutionary dynamics in scenario 3 so

Informed dispersal and range dynamics
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that the classification into core and front populations is not

meaningful. We nevertheless report data from scenario 3 in

Fig. 3b. Note that while the parameter estimates differ

slightly if we nevertheless include scenario 3 in the analysis,

the confidence intervals clearly overlap for the parameter of

interest (q) implying no significant differences (CI
q
coreð1;2Þ1.80,

2.11; CI
q
coreð1;2;3Þ 1.80, 2.91; CI

q
frontð1;2Þ 4.31, 7.86; CI

q
frontð1;2;3Þ

1.48, 10.47).

RESULTS

Theoretical predictions

In the control and gradient scenarios our theoretical analyses

(Fig. 1) predict evolutionarily increased dispersal at the range

front compared with the range core (Fig. 1b, d). In the gradi-

ent scenario, the difference in evolved dispersal propensities

between range core and front populations is reduced. Fur-

thermore, we predict higher population densities at range

fronts in the control scenario and, to a lesser extent, also in

the gradient scenario (Figs. 1a, c & S3a, b). The invasion

does not proceed as far in the gradient scenario as in the

control, suggesting the formation of a stable range border

(Figs. 1a, c & S3a, b).

In the informed dispersal scenario, the density profile of

populations across the range is inverted in comparison with

the evolutionary scenarios, implying lower densities at range

fronts in comparison with range cores (Figs. 1e & S3c). These

predictions qualitatively hold true across a large range of

tested parameter values (Table S1, Figs. S6–S10), especially

for weak dispersal–fecundity trade-offs and fecundity–compe-

tition correlation coefficients greater than one.

Experimental range dynamics

Our experimental results corroborate our theoretical predic-

tions (Fig. 2). At the end of the range expansion phase we

found increased movement velocities (which correlate

strongly with dispersal; Fronhofer & Altermatt, 2015;

Fronhofer et al., 2015a) at range fronts (Fig. 2b, e, h),

although the effect was weak in the informed scenario (con-

trol: LMM space n 5 74(6), d.f. 5 72, t 5 11.79, P< 0.001;

gradient: LMM space n 5 77(6), d.f. 5 74, t 5 13.24,

P< 0.001; information and gradient: LMM space, n 5 64(6),

d.f. 5 62, t 5 4.69, P< 0.001). After the common garden, the

velocities in the range core, respectively range front, popula-

tions, were still significantly different in the control (Fig. 2c;

LMM range position, n 5 12, d.f. 5 9, t 5 3.94, P 5 0.0034)

and in the gradient scenario (Fig. 2f; LMM range position,

n 5 12, d.f. 5 10, t 5 7.23, P< 0.001). No differences were

observed in the informed scenario (Fig. 2i; LMM range posi-

tion, n 5 12, d.f. 5 10, t 5 20.045, P 5 0.965).

Furthermore, we observed the predicted spatial distribu-

tion of population densities with high densities at range

fronts and low densities in range cores in the control and

gradient scenario (Figs. 2a, c & S3d, e). Information use

completely inverted this pattern, leading to significantly

different distributions of population densities between

informed and uninformed scenarios (Figs. 2, S3d–f & S4) as

well as to lower population densities overall.

Concurrent changes in reproduction and competition

At the end of the experiment, we measured population

growth rates and competitive abilities after a common garden

phase to separate genetic from plastic effects. We observed a

positive correlation between growth rate and competitive

ability (Fig. 3b), corroborating our assumption about this

correlation (Fig. 3a; for details see equation (2) and Appen-

dix S1). While individuals from range cores followed the the-

oretically predicted correlation quantitatively, individuals

from range fronts shifted the predicted correlation curve

towards increased growth rates (Fig. 3b).

DISCUSSION

Research on range dynamics has often assumed homogene-

ous environments and consistently ignored that universally

occurring environmental gradients provide information to

spreading organisms about local conditions. Such informa-

tion may allow organisms to plastically adapt their dispersal

decisions (Clobert et al., 2009) and can potentially alter

macroecological patterns. Consequences of behavioural

changes for range dynamics have been discussed in the con-

text of density-dependent dispersal (Kubisch et al., 2011),

resulting in wider ranges, and in the context of social learn-

ing (Keith & Bull, 2016), to name but two examples. We

here theoretically and experimentally show that the ecological

and evolutionary dynamics of species ranges are not only

driven by the direct, fitness-relevant effect of environmental

gradients but, most importantly, by the information content

of such gradients.

We find that range expansions lead to increased dispersal

at the range front in the control and gradient scenarios (Fig.

2c, f), which is consistent with previous theoretical (reviewed

in Kubisch et al., 2014), comparative (e.g. Thomas et al.,

2001; Phillips et al., 2006; Lombaert et al., 2014) and experi-

mental results (Fronhofer & Altermatt, 2015; Williams et al.,

2016a). Importantly, however, the latter has hitherto only

been studied in unrealistic environmentally homogeneous

landscapes. The evolutionary increase in dispersal is due to

spatial assortment and the fitness advantages of dispersers

colonizing empty habitat at the range front and therefore

being released from competition (‘spatial selection’; Phillips

et al., 2010; Shine et al., 2011). As ecological and evolution-

ary dynamics were shown to occur at similar time-scales

across a large number of taxa (from protists to vertebrates;

DeLong et al., 2016), we expect spatial selection to be a wide-

spread phenomenon. Accordingly, we observe the evolution

of increased dispersal at the range front in the gradient sce-

nario as well. However, spatial selection is counteracted by

the increasing mortality. From a macroecological point of

view, the evolution of increased dispersal at range fronts

accelerates range expansions, as empirically found in cane

E. A. Fronhofer et al.
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toad invasions (Perkins et al., 2013) or in experimental plant

invasions (Williams et al., 2016a).

In the informed scenario, however, we find that dispersal

differences present at early stages of the expansion vanish

after a common garden phase (Fig. 2h, i), confirming our

model assumption regarding complete plasticity of dispersal

in this scenario. The significance of dispersal cues and subse-

quent informed decisions is in good accordance with the

movement ecology paradigm (Nathan et al., 2008) which

stresses the non-random nature of movement and, by exten-

sion, dispersal (Clobert et al., 2009).

Both our theoretical predictions and our experimental

results show a spatial density pattern of increasing popula-

tion sizes towards the range front in the absence of informa-

tion (Figs. 1 & 2). These density patterns emerge in the

theoretical results because resources are less depleted by more

dispersive individuals at range fronts due to the trade-off

between dispersal and reproduction (Eq. (3)) and concurrent

changes in competitive abilities (Eq. (2)). Consequently,

patches at the range front can support higher equilibrium

population densities (Fronhofer & Altermatt, 2015). Our

empirical results, especially the observed correlation between

reproduction and competition (Fig. 3), support our model

assumptions and the relationship between growth rate and

competitive ability derived in Appendix S1. In the informed

scenario we do not find increased densities at the range

front, because dispersal was completely plastic (Fig. 2h, i)

and the density differences are due to evolutionary dynamics.

Thus, information use inverts the spatial distribution of pop-

ulation densities across a species’ range.
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Figure 2 Range dynamics – experimental results. As predicted, the spatial distribution of population densities (a, d, g) showed an

increase in density towards the range front in the control (a) and gradient (d) scenarios. Information use (g) inverted this pattern (see

Fig. S3d–f; the distribution is statistically different from the other two; Fig. S4). On the last day of the evolution phase clear differences

in movement over space were found in all scenarios (b, e, h), although the effect was weak in the informed scenario. After the common

garden phase, the velocities in range core, respectively range front, populations were still significantly different in the control (c) and in

the gradient scenario (f). No differences were observed in the informed scenario (i). We report medians over six experimental replicates

[solid line; blue (range core) to red (range front)] and the 25th and 75th percentiles (grey shading; darker with time). Asterisks indicate

statistical significance (see text for details).
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The distribution of densities across a range, especially in

the context of environmental gradients, has important conse-

quences for range dynamics. It has been argued that range

expansions could be halted due to migration load, that is,

the influx of a large number of maladapted individuals from

the range core to the range front (Kirkpatrick & Barton,

1997). This prediction heavily relies on range cores exhibiting

larger densities than range margins. If the density pattern is

inverted, as in our control and gradient scenarios, or if

informed dispersal is the rule, the influx of maladapted geno-

types from range core to margin will be very limited and will

probably not affect range dynamics. Increased densities at

range fronts could also alter genetic patterns related to drift

and the resulting gene surfing of deleterious alleles in

expanding populations (Excoffier & Ray, 2008).

Remarkably, in our experiments the impact of the mortal-

ity gradient on the spatial distribution of densities was rela-

tively weak, while information use strongly inverted the

spatial pattern of population densities (Figs. 2d, g & S3d–f).

This indicates that it is not the direct fitness effect of the

environmental gradient itself but rather altered dispersal

behaviour based on the information content of the gradient

that drives range expansion dynamics into our experimental

environmental gradients. Our finding underlines the impor-

tance of information use and behavioural plasticity for dis-

persal and spatial dynamics under changing environmental

conditions (Clobert et al., 2009; O’Connor et al., 2011;

Ponchon et al., 2015), as well as for ecological and evolution-

ary dynamics in general (Dall et al., 2005; Schmidt et al.,

2010).

In our experiments, the mortality gradient selected for

increased reproduction (Fig. 3b). The quantitative difference

between theoretical prediction and experimental results (Fig.

S3) regarding the impact of information use can be linked to

the observed shift in the structure of trait correlation (Fig.

3). This shift can be interpreted as the result of strong selec-

tion for high reproduction at range fronts, explaining the rel-

atively small effect of the mortality gradient (Fig. 2d):

populations compensated for increased mortality with

increasing reproduction. The shift in the trait correlation

structure is probably due to a change in foraging behaviour

from a linear to a saturating functional response (see Appen-

dix S1 and Fronhofer & Altermatt, 2015). While increased

reproduction can thus be interpreted as an adaptation to the

gradient, our data suggest that the informed strategy still

achieves higher fitness at the range front (see Appendix S3).

We explored the ecological and evolutionary consequences

of an environmental gradient acting on mortality. Evidently,

changes in local conditions can also act by reducing fecun-

dity, and the nature of the gradient may impact eco-

evolutionary dynamics of ranges in general (see, e.g., Kubisch

et al., 2010, 2016). Nevertheless, here we theoretically show

that a combined gradient, simultaneously increasing mortal-

ity and decreasing fecundity, does not alter our results
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Figure 3 Concurrent evolution of reproduction and competition. (a) As derived in Appendix S1, our model assumes a correlation

between competitive ability (a) and fecundity (k; equation (2)). Given a linear functional response we predict a quadratic relationship

(k–a correlation coefficient q 5 2). Due to the trade-off between dispersal and fecundity, high fecundities and competitive abilities are
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the common garden phase. The theoretically predicted relationship between competition and reproduction was found for core

populations [blue; empirically measured a0 5 0.0074 (CI 0.0053, 0.0094); q 5 1.96 (CI 1.80, 2.11); only data from scenarios 1 and 2].

However, selection acting during the range exansion altered this relationship [red; a0 5 11.24 (CI 229.11, 51.60); q 5 6.09 (CI: 4.31,

7.86); only data from scenarios 1 and 2] allowing individuals at the range front to have higher reproductive rates than theoretically

predicted. Increased reproduction is highly advantageous as populations at the range front experience strong selection for both dispersal
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qualitatively (Fig. S5). A pure fecundity gradient may reduce

or even cancel the increase in population sizes across the

range. Nevertheless, information on environmental changes

along the gradient will be highly relevant to fitness and

therefore readily used by organisms capable of plastically

adjusting their dispersal strategy.

Our theoretical and experimental findings highlight the

need to include environmental heterogeneity and the capacity

of organisms to process information thereon into more real-

istic predictions of invasion dynamics and range expansions.

This is especially true in the context of changing environ-

ments and climatic conditions, as has been discussed by

O’Connor et al. (2011), who highlight that dispersal and nav-

igation behaviour are plastic traits which will affect local

adaptation, colonization and acclimatization. Urban et al.

(2016) also argue for more realism in biological models fore-

casting biodiversity dynamics under changing climates, and

stress the complexities of the dispersal process. It is especially

important to improve models, because more mechanistic and

dynamic process-based approaches have been shown to out-

perform the predictive ability of correlative models (Pagel &

Schurr, 2012; Zurell et al., 2016).

In conclusion, we show that environmental gradients have

a two-fold effect consisting of (1) a direct fitness-relevant

effect of the gradient itself and (2) the information the gradi-

ent conveys on the environmental change. This information

can steer dispersal decisions which affects macroecological

patterns of range expansions along environmental gradients.

Informed dispersal does not only affect expansion dynamics

but can completely invert the spatial distribution of popula-

tion densities.
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conspecifics impact population growth and intraspecific

competition.

Figure S3 Cumulative density distributions of population

densities over space during the range expansion —

theoretical predictions and empirical results.

Figure S4 Statistical analysis of the empirical cumulative

density distributions of population densities over space

during the range expansion.

Figure S5 Predicted range dynamics into a combined

mortality and decreasing fecundity gradient without

information use.

Figure S6 Sensitivity analysis: control. Convexity (concavity)

of the relative cumulative population density distribution.

Figure S7 Sensitivity analysis: control. Difference between

evolutionarily stable dispersal strategies in range cores and

range fronts.

Figure S8 Sensitivity analysis: gradient. Convexity

(concavity) of the relative cumulative population density

distribution.

Figure S9 Sensitivity analysis: gradient. Difference between

evolutionarily stable dispersal strategies in range cores and

range fronts.

Figure S10 Sensitivity analysis: gradient and information.

Convexity (concavity) of the relative cumulative population

density distribution.

Figure S11 Fitness expectations at the range front in

scenarios 2 and 3 in comparison to a recalculated ‘no

evolution’ scenario using growth rates and competitive

abilities from the range core of scenario 2.

Table S1 Important parameters of the evolutionary

individual-based model, their meaning and tested values.

Standard values are underlined.
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